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Introduction

® For the afternoon activity we'll be writing code that
implements a Kalman filter

e The foundation comes from “Potential artifacts in
conservation laws and invariants inferred from sequential
state estimation” by Wunsch et al. (2023)

® Goal is to adjust data, uncertainties, known/unknown
assumptions etc. to see the impact on state reconstruction



Notation summary

Let 0 < t < tr denote model time where tr = N;At for timestep
At. Define

® x(t): state vector
e A: state transition matrix
® g(t): perturbation/disturbance vector
® B: disturbance distribution matrix
® u(t): control terms (unknown forcing)
e T': control terms distribution matrix
Combining the above we define a time-evolving system,

x(t + At) = Ax(t) + Bq(t) + Tu(t)



Notation summary

Let 0 < t < tr denote model time where tr = N;At for timestep
At. Define

® x(t): state vector
e A:. state transition matrix
® qg(t): perturbation/disturbance vector
e B: disturbance distribution matrix
® u(t): control terms (unknown forcing)
e T". control terms distribution matrix
Combining the above we define a time-evolving system,

x(t + At) = Ax(t) + Bq(t) + Tu(t)



.
Model data

Define
® y(t): data vector
® n(t): noise vector
Combining the above gives form for observations/data,

y(t) = Ex(t) + n(t)

where E distributes entries of x
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Kalman filter equations

x(t,—) = Ax(t — At) + Bq(t — At)
P(t,—) = APAT 4+ TQI’

K(t) = P(t,—)ET (EP(t,—)ET + R) "
x(t) = x(t,—) + K(t) (y(t) — Ex(t,—))
P(t)=P(t,—) — K(t)EP(t,—)

Unknown forcing term



Three-mass spring oscillator




Equations of motion

d? d
m% + k& + k(& — &) + r% = qi(t)
2
mE2 ke + k(& — &)+ k& — &) + 52 = (1)
d? d
m?{? + k&3 + k(&3 — &) + f% = q3(t)
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N
Re-writing in the form x(t) = Ax(t — At) + Bq(t)

® Step 1: Reduce the system of equations to a first order
system

e Step 2: Discretize the system, we recommend Euler’s
method for the time discretization

Hint for 1;: Introduce the vector

( §1(t) '\

:
&5(t

()= 4o, /dt
dé, /dt
\dés/dt)
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where ¢(t) is white noise with variance 0.12



N
Re-writing in the form x(t) = Ax(t — At) + Bq(t)

Let

A— I5 Atls
- \AtK. LK+ AtR.

We chose the forcing

q(t) = q1(t) = 0.1cos (22i5tr) + £(t)

where ¢(t) is white noise with variance 0.12
This gives the final timestepping form

x(t 4+ At) = Ax(t) + Bq(t)



Forced solution
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|deas for reconstruction:

e Elements of the state vector
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ldeas for reconstruction:

e Elements of the state vector
® Energy £(t) (a diagnostic quantity):

e\ ) @\ faly)
E(t) = 5 xs5(t) x5(t) | — | x(t) | Kc | x(t)
X6(t) X6(t) X3(t) X3(t)



Sources of uncertainty across all experiments

e Noisy data (i.e. y(t) = x(t) + n(t))
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Sources of uncertainty across all experiments

e Noisy data (i.e. y(t) = x(t) + n(t))
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Sources of uncertainty across all experiments

e Noisy data (i.e. y(t) = x(t) + n(t))
® Imperfect forcing 0.5q(t) — &(t), i.e.:

27t

q(t) = 0.1cos <2—5r> + &(t)

Stochastic part will be fully unknown



Experiment ideas

e Accurate observations of all elements of x
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Experiment ideas

® Accurate observations of all elements of x
e Fixed position, x3(t) = x3 = 2
® Observations of averages
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