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® Introduction and notation

® One-dimensional linear problem: a simple example
® Extension to multi-dimensional problems

e Data assimilation techniques

® Sequential methods
® Variational (smoother) methods



What is data assimilation?

Data assimilation aims to combine available information (data)

with a numerical model while taking into account any possible
uncertainties

Figure 1. Courtesy of Aneesh Subramanian
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What can one do with data assimilation?
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Weather forecasting
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Improved ocean state reconstruction

OCEAN HEAT CONTENT CHANGES SINCE 1992 (NASA)

Data source: Observations from satellites and various ocean
measurement devices, including conductivity-temperature-depth
instruments (CTDs), Argo profiling floats, eXpendable
BathyThermographs (XBTs), instrumented mooring arrays, and ice-
tethered profilers (ITPs). Credit: NASA ECCO

Above: NASA ocean visualization, from https://
www.whoi.edu/know-your-ocean/ocean-topics/
how-the-ocean-works/ocean-circulation/currents-
gyres-eddies/.

Zettajoules

Right: NASA ECCO heat content reconstruction,
from https://climate.nasa.gov/vital-signs/ocean-
warming/?intent=121




Sunspot cycle predictions

SOLAR CYCLE PROGRESSION

ISES Solar Cycle Sunspot Number Progression
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Sunspot prediction from https://
WWW.swpc.noaa.gov/products/solar- ]
cycle-progression

Aurora photo from https://
www. uaf.edu/news/
archives/news-
archives-2010-2021/
featured-photo-
week-101.php
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Ingredient 1: Data
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N
Where do we get data?

From NASA JPL: https://www.jpl.nasa.gov/news/seal-takes-ocean-heat-
transport-data-to-new-depths



Seals are just one example...
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Ingredient 2: Numerical model
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Numerical models

® The numerical model represents a time-evolving state via the
equations of motion, conservation laws, etc.
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Numerical models

® The numerical model represents a time-evolving state via the
equations of motion, conservation laws, etc.

® State consists of coupled variables
® For the ocean, these can be,
® Temperature, salinity, velocities...



Ingredient 3: Uncertainties
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Alas, nothing is perfect...

We'll (almost) always have uncertainties in both the data and J
model
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Alas, nothing is perfect...

We'll (almost) always have uncertainties in both the data and
model J

Sources of uncertainty in data: Sources of uncertainty in

® Data sparsity, either spatially models:

(low density of data), ® Model discretization (discrete
temporally (infrequent data) solution is only ever an
or both (usually) approximation)

* Incomplete data (e.g., data on ° Boundary conditions (e.g. ice
temperature, but no data on sheet bottom topography)
salinity) e Model parameters

® Measurement error (e.g.
noisy data)
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data uncertainties!



What can we do?

Importantly: data assimilation takes into account the model and
data uncertainties!

The best model estimate will be one that's computed with
statistical info on sources of uncertainties



Notation and concepts
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Let's define:
x - model state
x - model prediction
y - data/observation
n - observational error



Variables we'll use

Let's define:
x - model state
x - model prediction
y - data/observation
n - observational error

Generally, these variables are multi-dimensional, but we'll also
(briefly) look at a one-dimensional problem



A couple definitions from statistics

Let p(x) denote a probability distribution, y = x + nan
observation, and let E(.) denote the expectation value



A couple definitions from statistics

Let p(x) denote a probability distribution, y = x + nan
observation, and let E(.) denote the expectation value
Expectation value

E(n) is the expected value of n; this is the average value n will
be given p




A couple definitions from statistics

Let p(x) denote a probability distribution, y = x + nan
observation, and let E(.) denote the expectation value

Expectation value

E(n) is the expected value of n; this is the average value n will
be given p

Variance

E((n— E(n))?) is the variance of n; this is the amount n will vary
around the mean )




Example: Least-squares linear estimation

Goal:
Estimate unknown quantity x given observations

Yyi=x-+ny, Ys=Xx-+n

with errors ny, no
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Example: Least-squares linear estimation

Goal:
Estimate unknown quantity x given observations

Yyi=x-+ny, Ys=Xx-+n

with errors ny, ny

Assumptions:

E(n) = E(n2) =0 = Unbiased observations
E(ni) = of, E(n)= 03

E(niny) =0 = Observation errors are uncorrelated



Example: Least-squares linear estimation

A linear approximation would be

X = aiy1 + azy»

for (currently) unknown weights a;, a».



Example: Least-squares linear estimation

A linear approximation would be

X = aiy1 + azy»

for (currently) unknown weights a;, a».

To figure out the weights, we'll minimize a model-data misfit:

1

J(x) = ?(X — )’ + %(X — y2)
1 2

2




Minimizing J
We begin by taking a derivative:
oJ 1 0 1 0 5
ox 8X(X )+ _58_()( —2)
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Minimizing J
We begin by taking a derivative:

ol 1 0 1 0

B Y A VR Y.
ox 2 ox XTI gy
2 2
= —(x—y1)+ —=(x —y2)
01 03



Minimizing J
We begin by taking a derivative:
oJ 10 >, 10 5
ox o2 6X(X ) U—ga(X—ﬂ)
2 2
= S (x=—n)+ 5Kx—y)
01 02

Next, we set it equal to zero and solve for x:

03 . _di
— X = —5 3N y2
a% + 0% 0% -+ 0%



Minimizing J
We begin by taking a derivative:
0J 1 0 1 0
o = 2o () o (x— p)’

2 2
= —(x—y1)+ _2(X — )
01 op

Next, we set it equal to zero and solve for x:

Ao
— X= 535N Y2
0'1 ‘|—0'2 1+ 2

This tells us precisely how to weight the data points:

o5 o3
a=——5—->5, =—F5">5
o1 + 03 o1 + 03



A sketch of this estimation




Comment on this estimate

One can find X through a different minimization
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Comment on this estimate

One can find X through a different minimization

® |n addition to the assumptions from before, add that X be
an unbiased estimate (e.g. E(X) = E(x))

® Minimize
o® = E((% — x)?)

® This means X is the estimate that minimizes uncertainty
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All of the above can be shifted to multi-dimensions:
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Extension to multi-dimensions

All of the above can be shifted to multi-dimensions:
y=Ex—+n
E(n)=0
E(nn™) = R (Covariance matrix!)

Then we want the estimate x to minimize the loss:

J(x)=(Ex—y) R (Ex—y)



Extension to multi-dimensions

Minimizing J yields x:

o) _
ox



Extension to multi-dimensions

Minimizing J yields x:

o) 0

0 D XTET T R (Ex )+ (Bx— )T L (R Ex )



Extension to multi-dimensions

Minimizing J yields x:
o4 _ 9
Ox  Ox

=2(Ex—y)"R'E

[xTET - yT} R™(Ex —y) + (Ex — Y)Ta% (R~ (Ex =)



Extension to multi-dimensions

Minimizing J yields x:

éU_ 0 TeT T -1 Ta -1
= o [XTET =y | R(Ex—y) + (Bx —y)T o [R7(Ex—y)

=2(Ex—y)"R'E
Setting this equal to zero and solving for x gives:

x=(E"R'E)ETR 1y
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The estimate x

The estimate
x=(E"RE)Y'ETR 1y

we found is sometimes referred to as the BLUE

This stands for the best linear unbiased estimate of x from y J

The corresponding uncertainty is

P=E(x-x)(%x—x)")



The estimate x

The estimate
x=(E"R'E)Y'ETR 1y

we found is sometimes referred to as the BLUE

This stands for the best linear unbiased estimate of x from y J

The corresponding uncertainty is

P=E((%*—x)(x—x)")=(E"TR'E)™!



Sequential methods: Kalman filtering
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Note: moving to time-dependent notation

We'll let t € [0, t¢], At a timestep. We have:
* x(t+ At) = Ax(t)
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Note: moving to time-dependent notation

We'll let t € [0, t¢], At a timestep. We have:
* x(t+ At) = Ax(t)
® Observations are now time-dependent y(t)
* In general we'll just add a (t)



Kalman filtering

Suppose we have,
e A background estimate x(t) = x(t) + (t) with error &(t),
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Kalman filtering

Suppose we have,
e A background estimate x(t) = x(t) + e(t) with error (t),
* corresponding covariance matrix P(t) = E(e(t)e(t)") and,
e data/observation y(t + At) = Ex(t + At) + n(t + At)

Kalman filtering aims to produce the BLUE x(t + At) given both
x(t) and y(t + At) J




Kalman filtering

Step 1: an intermediate prediction,
x(t+ At,—) = Ax(t)

where “—" indicates no data has been incorporated at time t
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Kalman filtering

Step 1: an intermediate prediction,
x(t+ At,—) = Ax(t)

where “—" indicates no data has been incorporated at time t
Step 2: Computing the uncertainty P(t + At, —):

P(t+At,—)=E ((A)?(t) — Ax(t))(A%(t) — Ax(t))T)
—E (As(t)s(t)TAT>
= AP(t)A”
Which defines for us

P(t + At,—) := AP(t)A"
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Kalman filtering

We now have (1) an estimate x(t + At, —) and (2) its uncertainty
P(t + At,—). How to add the data y(t + At)?

As before, with the least-squares linear estimation!

Let's list the knowns:

Ty _
o x(t+At,—) = Ix(t+ At)+ ¢ * Elee’) =

P(t+ At,—)
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Kalman filtering

We now have (1) an estimate x(t + At, —) and (2) its uncertainty
P(t + At,—). How to add the data y(t + At)?

As before, with the least-squares linear estimation!

Let's list the knowns:
e E(ee™) =
P(t+ At,—)
° E(nnT) = R(t + At)

* X(t+ At,—)=Ix(t+ At)+ e
o y(t+At) = Ex(t+At)+n(t+At)

Goal:

. o |X(t+ At, )
X(t+ At) =7 [ y(t+ At) ]
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Kalman filtering

Luckily, we found what 7 was for multi-dimensions:

? — (ETB—lg)—IETB—l

SIS
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Kalman filtering: the Kalman gain matrix

Putting it all together, the BLUE from the Kalman filter is:

o e[ A S

—1

= %(=) + P(-)ET (EP(—)ET 1 R) (y - Ei(—))



Kalman filtering: the Kalman gain matrix

Putting it all together, the BLUE from the Kalman filter is:

(o e[ Al S
=X(=)+P(-)E" (EP(—)ET + R) B (y - E)?(—))

This is the Kalman gain matrix |
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Kalman filtering: improved uncertainty

Similarly, we can use prior results to update the uncertainty
P(t + At,—):

P(t+At)=(E'R'E)™!
= P(t+ At,—) — K(t + A)EP(t + At,—)



N
Kalman filter equations

X(t+ At,—) = Ax(t)
P(t+ At,—) = AP(t)AT
K(t+ At) = P(t + At, —)ET(EP(t + At,—)ET + R(t + At)) -

X(t+ At) = x(t + At, —) + K(t + At) (y(t + At) — Ex(t + At, —))
P(t+ At) = P(t,—) — K(t + At)EP(t,—)



Sequential estimation

x()




Kalman filter discontinuities

From “Potential artifacts in conservation laws and invariants inferred from sequential
state estimation” by Wunsch, Williamson, Heimbach
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Variational methods: smoothing
problem
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Variational methods

Consider the model-data misfit

J(x) =) (Ex(t) - y(t))" R (Ex(t) - y(t))

t=to

® Our goal is still the BLUE x(t) given available data y

e |n variational methods, we’ll minimize J under the
constraint x(t + At) = Ax(t)

Variational methods combine available observations with the
numerical model by globally adjusting the model to
observations




Variational methods

®* The method we'll use to minimize J is the Lagrange
multiplier method
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Variational methods

®* The method we'll use to minimize J is the Lagrange
multiplier method

e Step zero in a variational scheme is to decide the control
variables

e Qur control variable will be the initial condition

Goal
Utilize Lagrange multipliers to compute

0J
6X( t())




Minimizing J

® Let u(t) denote the Lagrange multipliers
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Minimizing J

® Let u(t) denote the Lagrange multipliers
® Qur Lagrangian then is:

tf

Loap)=Jx)+ 3w (x(t) - Ax(t - Ab)
t=to+At

e Stationary points of £ correspond to the minima of the
constrained optimization problem!
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Finding stationary points of £: the normal equations

We now take derivatives of

tr

Lx,p)=J(x)+ Y p(t)" (x(t) - Ax(t — At))
t=to+At

oL
Op(t)
oL
8X( tf)
oL
Ox(t)
oL
8x( to)
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Finding stationary points of £: the normal equations

We now take derivatives of

tr

Lx,p)=J(x)+ Y p(t)" (x(t) - Ax(t — At))

t=tg+At

oL

Op(t)
oL
8X( tf)
oL
Ox(t)
oL
0x(tp)

= x(t) — Ax(t + At) =0 to <t <tr




Finding stationary points of £: the normal equations

We now take derivatives of

tr

Llx,p)=J(x)+ Y u(t)"(x(t) - Ax(t — At))
t=to+At

oc
o
ox(t) ~ ox(ey) M) =0 L
oL

Ox(t)

oL

0x(tp)

x(t) — Ax(t + At) =0 to <t <tf




Finding stationary points of £: the normal equations

We now take derivatives of

tr

Lx,p)=J(x)+ Y p(t)" (x(t) - Ax(t — At))

t=to+At
ai(ﬁt) = x(t) = Ax(t + At) =0 h=t=t
8)(?(£tf) N af(th) tale) =0 o
§
owe ~ x5 10 (T ) T80 =0 mrsua
oL
8x(to)



Finding stationary points of £: the normal equations

We now take derivatives of

tr

Lx,p)=J(x)+ Y p(t)" (x(t) - Ax(t — At))
t=to+At

oL

= x(t) — Ax(t+ At) =0
5l = X() ~ Ax(t + A1
oL 0J

(tr) =0

ox(tr)  ox() M

oL 0J <8A(x(t))
ox(t)

ox(t) ~ ax(r) T~
o _ o) (aA(x(to))
8x(to) N 6X(t()) 8X(to)

-
) pu(t+ At) =0

7
) u(to + At)



Variational framework (for adjoint method)

e Step o: Define the control variables
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Variational framework (for adjoint method)

e Step o: Define the control variables

® Step 1: Locate Lagrangian stationary point (i.e. solve the
normal equations)

® Step 2: Use computed derivative 0L /0x(ty) in gradient
based optimization



BN
One sticky point in adjoint method

Computing model derivative

OA(x(1)) "
Ox(t)

is difficult
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N
One sticky point in adjoint method

Computing model derivative
OA(x(t) "
ox(t)

is difficult
® One can write this out by hand, but it would be tedious
® Making use of automatic differentiation is ideal



Sketch of the variational method: improving initial
condition




What about other control variables?
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e We can opt to define (tune) a different control variable
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Variational methods are a little flexible

e We can opt to define (tune) a different control variable
® |In these examples we've had a line x(t) = mt + b
e What about tuning other parameters?



Variational method sketch: tuning m
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Variational method sketch: tuning mand b
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Sequential vs. variational methods
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Sequential vs. variational methods

From “Potential artifacts in conservation laws and invariants inferred from sequential
state estimation” by Wunsch, Williamson, Heimbach

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step



Conclusions

e Data assimilation aims to combine observations, models,
and their uncertainties



Conclusions

e Data assimilation aims to combine observations, models,
and their uncertainties
® Depending on application, different methods warranted:
¢ forecasting: sequential methods



Conclusions

e Data assimilation aims to combine observations, models,
and their uncertainties
® Depending on application, different methods warranted:

¢ forecasting: sequential methods
® reconstruction: smoother methods



Conclusions

e Data assimilation aims to combine observations, models,
and their uncertainties
® Depending on application, different methods warranted:
¢ forecasting: sequential methods
® reconstruction: smoother methods

® The solution to the DA problem (either filtering or
smoothing) depends on the uncertainties that are provided
for the background state and the observational error



Thank you for listening!

July 16,2024  54/54



	Intro
	Notation

	Linear problem
	Sequential methods: Kalman filtering
	Variational methods
	Conclusion

