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Outline

• Introduction and notation
• One-dimensional linear problem: a simple example

• Extension to multi-dimensional problems
• Data assimilation techniques

• Sequential methods
• Variational (smoother) methods
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What is data assimilation?

Data assimilation aims to combine available information (data)
with a numerical model while taking into account any possible
uncertainties

Figure 1: Courtesy of Aneesh Subramanian
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What can one do with data assimilation?
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Weather forecasting
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Improved ocean state reconstruction
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Sunspot cycle predictions
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Three key pieces to data assimilation:

Data,

numerical model, uncertainties
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Ingredient 1: Data
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Where do we get data?

From NASA JPL: https://www.jpl.nasa.gov/news/seal-takes-ocean-heat-
transport-data-to-new-depths
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Seals are just one example...
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Ingredient 2: Numerical model
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Numerical models

• The numerical model represents a time-evolving state via the
equations of motion, conservation laws, etc.

• State consists of coupled variables
• For the ocean, these can be,

• Temperature, salinity, velocities...
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Ingredient 3: Uncertainties
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Alas, nothing is perfect...

We’ll (almost) always have uncertainties in both the data and
model

Sources of uncertainty in data:
• Data sparsity, either spatially
(low density of data),
temporally (infrequent data)
or both (usually)

• Incomplete data (e.g., data on
temperature, but no data on
salinity)

• Measurement error (e.g.
noisy data)

Sources of uncertainty in
models:

• Model discretization (discrete
solution is only ever an
approximation)

• Boundary conditions (e.g. ice
sheet bottom topography)

• Model parameters
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What can we do?

Importantly: data assimilation takes into account the model and
data uncertainties!

The best model estimate will be one that’s computed with
statistical info on sources of uncertainties
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Notation and concepts
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Variables we’ll use

Let’s define:
x - model state
x̃ - model prediction
y - data/observation
n - observational error

Generally, these variables are multi-dimensional, but we’ll also
(briefly) look at a one-dimensional problem
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A couple definitions from statistics

Let p(x) denote a probability distribution, y = x + n an
observation, and let E (.) denote the expectation value

Expectation value
E (n) is the expected value of n; this is the average value n will
be given p

Variance
E
(
(n− E (n))2

)
is the variance of n; this is the amount n will vary

around the mean
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Example: Least-squares linear estimation

Goal:
Estimate unknown quantity x given observations

y1 = x + n1, y2 = x + n2

with errors n1, n2

Assumptions:

E (n1) = E (n2) = 0 =⇒ Unbiased observations
E (n2

1) = σ2
1, E (n2

2) = σ2
2

E (n1n2) = 0 =⇒ Observation errors are uncorrelated
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Example: Least-squares linear estimation

A linear approximation would be

x̃ = a1y1 + a2y2

for (currently) unknown weights a1, a2.

To figure out the weights, we’ll minimize a model-data misfit:

J(x) =
1
σ2

1
(x − y1)

2 +
1
σ2

2
(x − y2)

2
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Minimizing J

We begin by taking a derivative:

∂J

∂x
=

1
σ2

1

∂

∂x
(x − y1)

2 +
1
σ2

2

∂

∂x
(x − y2)

2

=
2
σ2

1
(x − y1) +

2
σ2

2
(x − y2)

Next, we set it equal to zero and solve for x :

=⇒ x =
σ2

2
σ2

1 + σ2
2
y1 +

σ2
1

σ2
1 + σ2

2
y2

This tells us precisely how to weight the data points:

a1 =
σ2

2
σ2

1 + σ2
2
, a2 =

σ2
1

σ2
1 + σ2

2
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A sketch of this estimation
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Comment on this estimate

One can find x̃ through a different minimization

• In addition to the assumptions from before, add that x̃ be
an unbiased estimate (e.g. E (x̃) = E (x))

• Minimize
σ2 = E ((x̃ − x)2)

• This means x̃ is the estimate that minimizes uncertainty
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Extension to multi-dimensions

All of the above can be shifted to multi-dimensions:

y = Ex + n
E (n) = 0
E (nnT ) = R (Covariance matrix!)

Then we want the estimate x̃ to minimize the loss:

J(x) = (Ex − y)TR−1(Ex − y)
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Extension to multi-dimensions

Minimizing J yields x̃ :

∂J

∂x
=

∂

∂x

[
xTET − yT

]
R−1(Ex − y) + (Ex − y)T

∂

∂x

[
R−1(Ex − y)

]
= 2(Ex − y)TR−1E

Setting this equal to zero and solving for x gives:

x̃ = (ETR−1E )−1ETR−1y
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The estimate x̃

The estimate
x̃ = (ETR−1E )−1ETR−1y

we found is sometimes referred to as the BLUE

This stands for the best linear unbiased estimate of x from y

The corresponding uncertainty is

P = E
(
(x̃ − x)(x̃ − x)T

)
= (ETR−1E )−1
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Sequential methods: Kalman filtering
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Note: moving to time-dependent notation

We’ll let t ∈ [0, tf ],∆t a timestep. We have:
• x(t +∆t) = Ax(t)

• Observations are now time-dependent y(t)
• In general we’ll just add a (t)
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Kalman filtering

Suppose we have,
• A background estimate x̃(t) = x(t) + ε(t) with error ε(t),

• corresponding covariance matrix P(t) = E (ε(t)ε(t)T ) and,
• data/observation y(t +∆t) = Ex(t +∆t) + n(t +∆t)

Kalman filtering aims to produce the BLUE x̃(t +∆t) given both
x̃(t) and y(t +∆t)
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Kalman filtering

Step 1: an intermediate prediction,

x̃(t +∆t,−) = Ax̃(t)

where “−” indicates no data has been incorporated at time t

Step 2: Computing the uncertainty P(t +∆t,−):

P(t +∆t,−) = E
(
(Ax̃(t)− Ax(t))(Ax̃(t)− Ax(t))T

)
= E

(
Aε(t)ε(t)TAT

)
= AP(t)AT

Which defines for us

P(t +∆t,−) := AP(t)AT
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Kalman filtering

We now have (1) an estimate x̃(t +∆t,−) and (2) its uncertainty
P(t +∆t,−). How to add the data y(t +∆t)?

As before, with the least-squares linear estimation!

Let’s list the knowns:

• x̃(t +∆t,−) = Ix(t +∆t) + ε

• y(t+∆t) = Ex(t+∆t)+n(t+∆t)

• E (εεT ) =
P(t +∆t,−)

• E (nnT ) = R(t +∆t)

Goal:

x̃(t +∆t) =?

[
x̃(t +∆t,−)
y(t +∆t)

]
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Kalman filtering

Luckily, we found what ? was for multi-dimensions:

? = (ETR−1E )−1ETR−1

E =

[
I
E

]
, R =

[
P(−) 0

0 R

]
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Kalman filtering: the Kalman gain matrix

Putting it all together, the BLUE from the Kalman filter is:

x̃ =

{[
I ET

] [P−1(−) 0
0 R−1

] [
I
E

]}−1 [ I
E

]T [
P−1(−) 0

0 R−1

] [
x̃(−)

y

]

= x̃(−) + P(−)ET

(
EP(−)ET + R

)−1(
y − Ex̃(−)

)
This is the Kalman gainmatrix
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Kalman filtering: improved uncertainty

Similarly, we can use prior results to update the uncertainty
P(t +∆t,−):

P(t +∆t) = (ETR−1E )−1

= P(t +∆t,−)− K (t +∆)EP(t +∆t,−)
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Kalman filter equations

x̃(t +∆t,−) = Ax̃(t)

P(t +∆t,−) = AP(t)AT

K (t +∆t) = P(t +∆t,−)ET

(
EP(t +∆t,−)ET + R(t +∆t)

)−1

x̃(t +∆t) = x̃(t +∆t,−) + K (t +∆t) (y(t +∆t)− Ex̃(t +∆t,−))

P(t +∆t) = P(t,−)− K (t +∆t)EP(t,−)
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Sequential estimation
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Kalman filter discontinuities
From “Potential artifacts in conservation laws and invariants inferred from sequential
state estimation” by Wunsch,Williamson, Heimbach
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Variational methods: smoothing
problem
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Variational methods

Consider the model-data misfit

J(x) =
tf∑

t=t0

(Ex(t)− y(t))TR−1(Ex(t)− y(t))

• Our goal is still the BLUE x̃(t) given available data y
• In variational methods, we’ll minimize J under the
constraint x(t +∆t) = Ax(t)

Variational methods combine available observations with the
numerical model by globally adjusting the model to
observations
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Variational methods

• The method we’ll use to minimize J is the Lagrange
multiplier method

• Step zero in a variational scheme is to decide the control
variables

• Our control variable will be the initial condition

Goal
Utilize Lagrange multipliers to compute

∂J

∂x(t0)
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Minimizing J

• Let µ(t) denote the Lagrange multipliers

• Our Lagrangian then is:

L(x , µ) = J(x) +
tf∑

t=t0+∆t

µ(t)T
(
x(t)− Ax(t −∆t)

)

• Stationary points of L correspond to the minima of the
constrained optimization problem!
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Finding stationary points of L: the normal equations

We now take derivatives of

L(x , µ) = J(x) +
tf∑

t=t0+∆t

µ(t)T
(
x(t)− Ax(t −∆t)

)

∂L
∂µ(t)

= x(t)− Ax(t +∆t) = 0 t0 ≤ t ≤ tf

∂L
∂x(tf )

=
∂J

∂x(tf )
+ µ(tf ) = 0 t = tf

∂L
∂x(t)

=
∂J

∂x(t)
+ µ(t)−

(
∂A(x(t))
∂x(t)

)T

µ(t +∆t) = 0 t0 < t ≤ tf −∆t

∂L
∂x(t0)

=
∂J

∂x(t0)
+

(
∂A(x(t0))
∂x(t0)

)T

µ(t0 +∆t) t = t0
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Variational framework (for adjoint method)

• Step 0: Define the control variables

• Step 1: Locate Lagrangian stationary point (i.e. solve the
normal equations)

• Step 2: Use computed derivative ∂L/∂x(t0) in gradient
based optimization
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One sticky point in adjoint method

Computing model derivative

∂A(x(t))
∂x(t)

T

is difficult

• One can write this out by hand, but it would be tedious
• Making use of automatic differentiation is ideal
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Sketch of the variational method: improving initial
condition
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What about other control variables?
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Variational methods are a little flexible

• We can opt to define (tune) a different control variable

• In these examples we’ve had a line x(t) = mt + b

• What about tuning other parameters?
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Variational method sketch: tuning m

July 16, 2024 49 / 54



Variational method sketch: tuning m and b
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Sequential vs. variational methods
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Sequential vs. variational methods
From “Potential artifacts in conservation laws and invariants inferred from sequential
state estimation” by Wunsch,Williamson, Heimbach
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Conclusions

• Data assimilation aims to combine observations, models,
and their uncertainties

• Depending on application, different methods warranted:
• forecasting: sequential methods
• reconstruction: smoother methods

• The solution to the DA problem (either filtering or
smoothing) depends on the uncertainties that are provided
for the background state and the observational error
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Thank you for listening!
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