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source: nasa.gov/ISSHurricane Beryl over the Caribbean (taken by NASA astronaut Matthew Dominick)

http://nasa.gov/ISS


• Improve probabilistic weather & climate forecasts 
• Better representation of uncertainty in forecasts

Motivation

source: https://www.wmo.int/



Learning Goals

• Learn why representing initial condition uncertainty is necessary in ensemble 
forecasts 

• Learn about the two main sources for uncertainty and how they impact 
ensemble forecasts 

• Learn how machine learning can augment traditional data assimilation 

• Learn why stochastic parametrization is necessary to represent model 
uncertainty 

• Learn how machine learning can be used for model uncertainty 
representation





“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”  
                                                                                       -(Lorenz 1972)

Predictability in a deterministic nonperiodic flow



“Finite time for error in representation of small scales to affect accuracy of simulation of 
large scales, no matter how small in scale and hence amplitude this model error is”  

                                                                                                      -(Lorenz 1969)

Sensitive dependence to initial conditions

r = 28, σ = 10, and b = 8/3

source: wikipedia
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DISCUSSION QUESTION

Which of the following statements is true regarding initial condition 
error and model error in ensemble forecasting? 

A) Initial condition error primarily affects long-term forecasts, while 
model error primarily affects short-term forecasts. 

B) Initial condition error primarily affects short-term forecasts, while 
model error primarily affects long-term forecasts. 

C) Both initial condition error and model error equally affect short-
term and long-term forecasts. 

D) Initial condition error only affects oceanic forecasts, while model 
error only affects atmospheric forecasts. 
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Two main sources for uncertainty: 
1. Initial condition uncertainty 
2. Model error from sub-grid scale parameterization (from represented sub-grid 

scale processes and unrepresented physical processes) 

Sources for uncertainty in earth system forecasts

soil moisture flux

evapo-transpiration

source: ECMWF, GFDL

Model uncertaintyInitial condition uncertainty

source: https://www.livescience.com/





Stochastic (random) perturbations added to the model tendencies. 
This should act to increase the spread in the ensemble but not always!

Stochastic perturbations in an 
ensemble forecast model



What qualifies as a reliable 
ensemble forecast?



What qualifies as a reliable 
ensemble forecast?

Provides a realistic estimate of the 
forecast uncertainty 



DISCUSSION QUESTION

In ensemble forecasting, what are the main implications of an 
underdispersive ensemble? 

A) Overconfident predictions, underestimating variability and risk of 
extremes. 

B) Accurate range, conservative predictions. 

C) Equally reliable as overdispersive. 

D) Broader range, less certain predictions.
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In a reliable ensemble, ensemble spread is a predictor of the ensemble error

Averaged over many ensemble forecasts

𝛜(x) = 𝞼(x)

Ensemble forecasting for uncertainty prediction

reliable ensemble

truth / observations
ensemble member
ensemble mean

𝞼(x)❬x❭

𝛜(x)



In a reliable ensemble, ensemble spread is a predictor of the ensemble error

𝞼(x)❬x❭

𝛜(x)

Averaged over many ensemble forecasts

𝛜(x) = 𝞼(x)

Ensemble forecasting for uncertainty prediction
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 Main two sources for uncertainty in model forecasts: 
1. Initial condition uncertainty 
2. Model error from sub-grid scale parameterization 

The Ensemble Forecasting system (ECMWF) simulates the effect of : 
● Initial condition uncertainty using Singular Vector + Ensemble Data 

Assimilation perturbations for the initial conditions 
● Model uncertainties (2 stochastic schemes, SPPT and SKEB) 

Stochastic parameterization has been successfully demonstrated in numerical 
weather prediction (e.g., Buizza et al., 1999; Shutts and Palmer, 2007; Palmer et 
al., 2009) and monthly to seasonal prediction (Weisheimer et al., 2011).  

Berner et al. (2016) : A very good review of stochastic parameterization for 
weather and climate models

Ensemble Forecasting





DA in Operational Forecast Models



Bottlenecks may include: 
• The need for multiple model runs 
• Model space to observation space mapping 
• Inversion of very large matrices 
• Computing gradients in very large dimensional spaces

ECMWF

Traditional DA Methods are Computationally Expensive



High Resolution Observations are Underutilized
• Large quantities of observations are not assimilated 
• Incorporating these data into forecast models has the potential to 

significantly improve skill 

Machine learning may be able to help

https://searchengineland.com/machine-learning-search-terms-concepts-
algorithms-383913

NASA JPL



Machine Learning Has Been Combined with 
DA

• Model surrogates (Bocquet 2023; Brajard et al., 2020)  
• Observation operator (Liang et al., 2023; Jing et al., 2019) 
• Variable resolution models (Barthélémy et al., 2022) 
• Bias correction (Chapman et al., 2019; 2022) 

Limited work attempting to perform assimilation directly 
with ML



Research Questions

1. Can a simple CNN be trained to emulate a traditional DA method 
successfully? 

2. Can an augmented method, using the trained CNN only for high 
resolution observations, outperform a traditional method in which high 
resolution observations are ignored?



● Set of N discrete  differential 
equations 

● Analogous to a single state variable 
zonally 

● Chaotic for some choices of forcing 
parameter 

● Used for testing DA methods

Lorenz-96 as a Test System

(van Kekem & Sterk, 
2018)

(van Kekem, 
2018)



Neural Network Assimilation

• Input: 
• Forecast mean 
• Forecast standard deviation 
• Innovation 

• Output: 
• Analysis mean 
• Analysis standard deviation 

• Train to replicate EnKF analysis 
ensemble statistics

Howard et al, 2024

Input
Output



Machine Learning Augmented Method

• EnKF AllObs 
• Assimilate all synthetic observations 

• EnKF SparseObs 
• Assimilate spatially and temporally thinned observations with the EnKF 

• Augmented 
• Assimilated spatially and temporally thinned observations with EnKF 
• Assimilate temporally thinned, spatially dense observations with trained 

neural network

Xa
j-1

EnKF AllObs EnKF SparseObs Augmented

Low Resolution 
Observations (ENKF)

Xa
j+1

Xf
j+1 Xf

j+1
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Howard et al, 2024



Augmented Method Produces Improved RMSE

Howard et al, 2024



Error Distribution



Reliability of Uncertainty Estimation



Forecasts Initialized with Augmented Method are More Accurate

Howard et al, 2024



Using a trained neural network to assimilate 
high-resolution data improves forecast accuracy 

in a synthetic system

Howard, L. J., Subramanian, A., 
& Hoteit, I. (2024). A machine learning augmented 
data assimilation method for high-resolution 
observations. Journal of Advances in Modeling 
Earth Systems, 16, e2023MS003774. https://
doi.org/10.1029/2023MS003774

TAKE HOME MESSAGE

https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774
https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774
https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774


Stochastic parameterization to represent model error

Stochastically Perturbed Parameterization 
Tendencies (SPPT)

Stochastic Kinetic Energy Backscatter  
(SKEB)

• The net parameterized physics tendency:  
𝑿= 𝑋𝑈, 𝑋𝑉, 𝑋𝑇, 𝑋𝑄  

coming from : (radiation schemes, gravity wave 
drag, vertical mixing, convection, cloud physics) 
• Perturbed with multiplicative noise 𝑿′ = (1 + 𝜇𝑟)𝑿 



Stochastic parameterization to represent model error

Stochastically Perturbed Parameterization 
Tendencies (SPPT)

Stochastic Kinetic Energy Backscatter  
(SKEB)

• The net parameterized physics tendency:  
𝑿= 𝑋𝑈, 𝑋𝑉, 𝑋𝑇, 𝑋𝑄  

coming from : (radiation schemes, gravity wave 
drag, vertical mixing, convection, cloud physics) 
• Perturbed with multiplicative noise 𝑿′ = (1 + 𝜇𝑟)𝑿 

• Simulates a missing and uncertain process 
• Parameterizes upscale transfer of energy from 

sub-grid scales  

Shutts and Palmer 2004,  Shutts 2005, Berner et 
al. 2009

        is the 3D random pattern 
            
        is the mean KE input by convective updrafts 

        is the dissipation rate



Subgrid-scale Ocean Processes



Subgrid-scale Ocean Processes



Stochastic perturbations :

Stochastic perturbations to GM scheme strengthens inter annual variability of AMOC



Lorenz ‘96 Model

1. Integrate both equations, RK4, dt = 0.001  =>  “true atmosphere” 
2. Forecast problem: assume Y variables unresolved. Integrate X equation RK2, 

dt = 0.005. Must parametrise U(X)

Parameter Settings: 
No. X variables, K=8 Forcing term, F = 20 
No. Y variables / X, J = 32 Spatial scale ratio, b = 10 
Coupling constant, h=1 , Timescale ratio, c = 10 

Subgrid U(X)

Wilks, 2005 
Arnold et al, 2013

Machine Learning for Stochastic Parameterization:  
Generative Adversarial Networks in the Lorenz ’96 Model

Gagne, D. J., H. Christensen, A. C. Subramanian, A. Monahan (2019): Machine Learning for Stochastic Parameterization: Generative 
Adversarial Networks in the Lorenz '96 Model, JAMES, 12, e2019MS001896. https://doi.org/10.1029/2019MS001896.



Machine Learning for Stochastic Parameterization:  
Generative Adversarial Networks in the Lorenz ’96 Model

David John Gagne II, Hannah Christensen, Aneesh Subramanian, Adam Monahan, 2020

Use discriminative model to train a generative model 
Originally proposed by Goodfellow et al. (2014)

Critic: Determines which 
samples are real or 
synthetic. Adaptive loss 
function.

Generator: Creates 
synthetic samples drawn 
from training data based on 
latent vector.

https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-
linguini.png 
http://www.imdb.com/character/ch0009859/mediaviewer/rm988253440

True Sample

Synthetic 
Sample

Feedback

Latent Vector

Neural 
network

Neural 
network

Xt-1, Ut-1, zAR1 N(0,1) Ut

https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-linguini.png
https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-linguini.png


GAN Configurations

Type Noise SD

lrg 1
med 0.1
sml 0.01
tny 0.001

Type Inputs
XU Xt-1 and Ut-1

X Xt-1

Type Noise Time 
Correlation

w 0
r Estimated from 

offline 
deterministic Ut 
residual 
autocorrelation

- -

Example: XU-med-w
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Smaller Hellinger distance: forecast pdf closer to ‘true’ pdf

• Climate analysis: 20,000 MTU integration 
(~270 “years”), discard first 2,000 MTU (30 
“years”) as spinup.  

• PDF measures of parameterized model 
climate compared to truth run shows some 
of the stochastic GAN parameterizations 
helps improve climate representation 
compared to polynomial fit 
parameterizations (analogous to current day 
climate model parameterizations)

•Weather forecasts were performed for 750 
initial conditions with 50 ensemble members for 
each forecast. 

•GAN parameterized models with X-only input 
have lower RMSE than poly but are 
overdispersive

Weather Forecast and Climate Run Summary Statistics



Summary

• Mean bias is reduced in stochastic prediction models 

• Extreme weather events are better represented 

• High frequency perturbations have nonlinear rectifications improving low frequency 
variability in models 

• Machine learning approaches can be used to improve both weather and climate forecasts 
and uncertainty in these forecasts



Thank You

“I believe that the ultimate climate models..will be stochastic, ie random numbers will appear 
somewhere in the time derivatives” 
                                                                                                                                  - Lorenz (1975).









Ensemble Kalman Filter

Ensemble 
Forecast

Observations

Observation 
Operator

Observation 
Error



Ensemble 
Forecast

Observation
s

 𝐾 = 𝐶𝐻𝑇(𝐻𝐶𝐻𝑇 + 𝑅)−1

Observation 
Operator

Observation 
Error

Covariance

Kalman Gain 
(weights)

Ensemble Kalman Filter



Kalman Gain 
(weights)

Ensemble 
Forecast

Observations
𝑋𝑎 = 𝑋𝑓 + 𝐾(𝑌 − 𝐻𝑋𝑓)

 𝐾 = 𝐶𝐻𝑇(𝐻𝐶𝐻𝑇 + 𝑅)−1

Observation 
Operator

Observation 
Error

Covariance

Analysis

Ensemble Kalman Filter



Generating Training Data

Parameter Value

Assimilation Time Step 0.05 Model Units/6 Hours

Max Time 2000 Model Units

Localization Distance 5 grid points

Inflation Factor 1 (no inflation)

Observation Error Standard 
Deviation

30% of climatological standard 
deviation

Ensemble Size 100

Generate “true” trajectory 
by integrating Lorenz system

Generate synthetic observations by 
adding normally distributed noise

Assimilate synthetic 
observations with EnKF



Regeneration of Ensemble

● Adjust forecast perturbations to 
match standard deviations 

● Weighted average of forecast and 
adjusted perturbations (tuned)



SHAP Values Quantify impact of Input Features

● “Explainable AI” 
● SHAP values approximate the contribution to the 

output (prediction) magnitude from each input 
variable

https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-
variational-information-bottleneck-approach/



● Linear regression model: 

● SHAP values approximate the contribution to the 
output (prediction) magnitude from each input 
variable

SHAP Values for Linear Regression Model

SHAP values for input variable i:

Model prediction as a function of SHAP values:



● Expect: 
○ Monotonic 

decrease 
○ Value at 2 greater 

than at 1 or 3
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Conclusions
● A simple neural network can be trained to emulate a 

traditional DA method 
● Using a trained network on high-resolution data 

improves accuracy in an augmented method 
● Explainable AI methods suggest that the network 

learns the correlation structure of the underlying 
system


