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Hurricane Beryl over the Caribbean (taken by NASA astronaut Matthew Dominick source: nasa.goVv/ISS



http://nasa.gov/ISS

Motivation

* |mprove probabilistic weather & climate forecasts
» Better representation of uncertainty in forecasts
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Learning Goals

* Learn why representing initial condition uncertainty is necessary in ensemble
forecasts

* Learn about the two main sources for uncertainty and how they impact
ensemble forecasts

» Learn how machine learning can augment traditional data assimilation

» Learn why stochastic parametrization is necessary to represent model
uncertainty

* Learn how machine learning can be used for model uncertainty
representation



DUWING THIS TRIAL: WE INTEND T©
PTOVE THAT THIS BUTTEWFELY. BY
NEGLIGENTLY FLAPPING HIS WINGS.
SET IN MOTION A cHAIN OF EVENTS.
WESULTING IN A TOTWWNADO MAKING
HIM FINANCIALLY WRESPONSIBLE




Predictability in a deterministic nonperiodic flow

“Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
-(Lorenz 1972)

| Deterministic Nonperiodic Flow'
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Finite systems of determmxsuc ordinary nonlinear differential equanons may be desxgned to represent, |
forced dissipative hydrodynamic flow. Solutions of these equatnons can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
‘unstable with respect to small modifications, so that slightly differing mmal states can evolve into consider-

- ably different states, Systems with bounded solutions are shown to possess bounded numerical solutions. -
. A simple system representing cellular convection is solved numencally All of the solutxons are found
| to be unstable, and almost all of them are nonperiodic. '
~ 'The feasibility of very-long-range weather predlction is, exammed in the hght of these results.




Sensitive dependence to initial conditions

“Finite time for error in representation of small scales to affect accuracy of simulation of
large scales, no matter how small in scale and hence amplitude this model error is”

-(Lorenz 1969)
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Ensemble Forecast with Initial Uncertainty
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DISCUSSION QUESTION

Which of the following statements is true regarding initial condition
error and model error in ensemble forecasting?

A) Initial condition error primarily affects long-term forecasts, while
model error primarily affects short-term forecasts.

B) Initial condition error primarily affects short-term forecasts, while
model error primarily affects long-term forecasts.

C) Both initial condition error and model error equally affect short-
term and long-term forecasts.

D) Initial condition error only affects oceanic forecasts, while model
error only affects atmospheric forecasts.
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Sources for uncertainty in earth system forecasts

Two main sources for uncertainty:
1. Initial condition uncertainty

2. Model error from sub-grid scale parameterization (from represented sub-grid
scale processes and unrepresented physical processes)

Initial condition uncertainty Model uncertainty
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Kalman filter equations

x(t+ At,—) = Ax(t)
P(t + At,—) = AP(t)A"
x(t+ At) = x(t+ At,—) + K(t + At) (y(t + At) — Ex(t + At,—))

K(t+ At) = P(t + At,—)E" (EP(t + At,—)E" + R(t + At)) B

P(t + At) = P(t,—) — K(t + At)EP(t,—)



Stochastic perturbations in an
ensemble forecast model

Each ensemble member sees a different
realisation of the forecast model.

Initial time | ater lead time

. Forecast
model

Set of perturbed initial Set of perturbed
conditions forecasts

Stochastic (random) perturbations added to the model tendencies.
This should act to increase the spread in the ensemble but not always!



What qualifies as a reliable
ensemble forecast?




What qualifies as a reliable
ensemble forecast?

Provides a realistic estimate of the
forecast uncertainty




DISCUSSION QUESTION

In ensemble forecasting, what are the main implications of an
underdispersive ensemble?

A) Overconfident predictions, underestimating variability and risk of
extremes.

B) Accurate range, conservative predictions.
C) Equally reliable as overdispersive.

D) Broader range, less certain predictions.
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Ensemble forecasting for uncertainty prediction

In a reliable ensemble, ensemble spread is a predictor of the ensemble error

reliable ensemble

truth / observations

Averaged over many ensemble forecasts - ensemble member
e ensemble mean



Ensemble forecasting for uncertainty prediction

In a reliable ensemble, ensemble spread is a predictor of the ensemble error
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Ensemble Forecasting

Main two sources for uncertainty in model forecasts:
1. Initial condition uncertainty
2. Model error from sub-grid scale parameterization

The Ensemble Forecasting system (ECMWF) simulates the effect of :

e Initial condition uncertainty using Singular Vector + Ensemble Data
Assimilation perturbations for the initial conditions

e Model uncertainties (2 stochastic schemes, SPPT and SKEB)

Stochastic parameterization has been successfully demonstrated in numerical
weather prediction (e.g., Buizza et al., 1999; Shutts and Palmer, 2007; Palmer et
al., 2009) and monthly to seasonal prediction (Weisheimer et al., 2011).

Berner et al. (2016) : A very good review of stochastic parameterization for
weather and climate models
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DA In Operational Forecast Models
A

Ensemble analysis Ensemble forecast

4D-Var trajectories — )

— First guesses
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Assimilation window Forecast



Traditional DA Methods are Computationally Expensive

Bottlenecks may include:

* The need for multiple model runs

 Model space to observation space mapping

* Inversion of very large matrices

 Computing gradients in very large dimensional spaces

xn=xh

Outer loop

Low-resolution adjoint model
Iterative minimisation algorithm

ECMWF



High Resolution Observations are Underutilized

» Large quantities of observations are not assimilated

* |ncorporating these data into forecast models has the potential to
significantly improve skKill

Machine learning may be able to help

High resolution products

Advanced wide
swath technology
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Machine Learning Has Been Combined with
DA

» Model surrogates (Bocquet 2023; Brajard et al., 2020)

e Observation operator (Liang et al., 2023; Jing et al., 2019)
e Variable resolution models (Barthélemy et al., 2022)

e Bias correction (Chapman et al., 2019; 2022)

Limited work attempting to perform assimilation directly
with ML



Research Questions

1. Can a simple CNN be trained to emulate a traditional DA method
successfully?

2. Can an augmented method, using the trained CNN only for high

resolution observations, outperform a traditional method in which high
resolution observations are ignored?



Lorenz-96 as a Test System

e Set of N discrete differential
eguations

zonally

parameter
e Used for testing DA methods

dmi
dt

— (sz‘+1 — wi—Z)mz’—l —z; + F

Analogous to a single state variable

Chaotic for some choices of forcing
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Neural Network Assimilation

Feature Maps

* |nput:
e Forecast mean

e Forecast standard deviation

e |nnovation

*  Qutput;
e Analysis mean

e Analysis standard deviation @ :Hidden tode
@ : Input Node

* T[rain to replicate EnKF analysis P—
ensemble statistics

(0%0) Howard et al, 2024

Center element of the kernel is placed over the ~ (0%0)
source pixel. The source pixel is then replaced (0x1)
with a weighted sum of itself and nearby pixels. ~ (0x1)

Convolution kernel
(emboss)

New pixel value (destination pixel)
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Machine Learning Augmented Method
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 ENnKF AllObs
e Assimilate all synthetic observations

 EnKF SparseQObs
o Assimilate spatially and temporally thinned observations with the EnKF

*  Augmented
o Assimilated spatially and temporally thinned observations with EnKF

e Assimilate temporally thinned, spatially dense observations with trained
neural network



Augmented Method Produces Improved RMSE
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Howard et al, 2024




Error Distribution

—  Unit Normal
(1 EnKF SparseObs
] Augmented

Probability Density

0.25

Cumulative Probability
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Error (Standard Deviations)



Reliability of Uncertainty Estimation

a) EnKF SparseObs b) Augmented
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Forecasts Initialized with Augmented Method are More Accurate

Forecast RMSE
\
\

Z ,// .~ === AllObs Standard Deviation
e — == SparseObs Standard Deviation
=" - —-=- Augmented Standard Deviation
EnKF AllObs
EnKF SparseObs
Augmented

0 2 4 6 38 10

Forecast Lead Time (days) Howard et al. 2024



TAKE HOME MESSAGE

Using a trained neural network to assimilate
high-resolution data improves forecast accuracy
IN a synthetic system

Howard, L. J., Subramanian, A.,
& Hoteit, I. (2024). A machine learning augmented T ==ty
data assimilation method for high-resolution "
observations. Journal of Advances in Modeling
Earth Systems, 16, e2023MS003774. hitps://
doi.org/10.1029/2023MS003774



https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774
https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774
https://doi-org.colorado.idm.oclc.org/10.1029/2023MS003774

Stochastic parameterization to represent model error

Stochastically Perturbed Parameterization Stochastic Kinetic Energy Backscatter
Tendencies (SPPT) (SKEB)

time (days)

* The net parameterized physics tendency:
X= XU, XV, XT, XQ

coming from : (radiation schemes, gravity wave
drag, vertical mixing, convection, cloud physics)

* Perturbed with multiplicative noise X = (1 + ur)X



Stochastic parameterization to represent model error

Stochastically Perturbed Parameterization Stochastic Kinetic Energy Backscatter
Tendencies (SPPT) (SKEB)

» Simulates a missing and uncertain process

» Parameterizes upscale transfer of energy from
sub-grid scales

Shutts and Palmer 2004, Shutts 2005, Berner et
al. 2009

time (days)

F™ is the 3D random pattern

* The net parameterized physics tendency: Btot is the mean KE input by convective updrafts
X= XU, Xv, XT, XQ

coming from : (radiation schemes, gravity wave Diot is the dissipation rate
drag, vertical mixing, convection, cloud physics)

* Perturbed with multiplicative noise X = (1 + ur)X



Subgrid-scale Ocean Processes

Resolved
advection

—

Unresolved,
parametrized
mixing

Unresolved
process
(e.g. eddy,
convection)

Model grid
box




Subgrid-scale Ocean Processes

P , Parametrized
mean

XY Z ... Unresolved scales - Model error

some state variables



“Stochastic Subgrid-Scale Ocean Mixing: Impacts on Low-Frequency Variability?

STEPHAN JURICKE, TIM N. PALMER, AND LAURE ZANNA
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom

Stochastic perturbations : P(,j) = [1 + &G )DIP™ (0, )),
Standard deviation of annual mean Relative change in variance of annual
zonally averaged streamfunction mean zonally averaged streamfunction
for REF, Atlantic between STO and REF, Atlantic
3 b) 30
2.187 9.830
1.536 2.332
1.029 0.307
0.648 0.009
- 10.375 0

0.192 -0.009
0.081 -0.307
0.024 -2.332
0.003 -9.830
0 -30

Stochastic perturbations to GM scheme strengthens inter annual variability of AMOC



Machine Learning for Stochastic Parameterization:

Generative Adversarial Networks in the Lorenz '96 Model

Lorenz ‘96 Model Sub;id U(X)
|

dX ., -
- = — X (Xk—’—X/w:-l) - X+ F
dt -
dY . he
dtl = —cb Y,‘+1 (Y;'+3 - Y_;‘—-l) - CY_; T [_)Ximn i—1)/ JT+]
(Parameter Settings: A
No. X variables, K=8 Forcing term, F = 20
No. Y variables / X, J = 32 Spatial scale ratio, b = 10
Goupling constant, h=1 . Timescale ratio, c = 10

1. Integrate both equations, RK4, dt = 0.001 => “true atmosphere”
2. Forecast problem: assume Y variables unresolved. Integrate X equation RK2,
dt = 0.005. Must parametrise U(X) Wilks. 2005

Arnold et al, 2013

Gagne, D. J., H. Christensen, A. C. Subramanian, A. Monahan (2019): Machine Learning for Stochastic Parameterization: Generative

Adversarial Networks in the Lorenz '96 Model, JAMES, 12, e2019MS001896. https://doi.org/10.1029/2019MS001896.




Machine Learning for Stochastic Parameterization:
Generative Adversarial Networks in the Lorenz 96 Model

David John Gagne Il, Hannah Christensen, Aneesh Subramanian, Adam Monahan, 2020

Use discriminative model to train a generative model
Originally proposed by Goodfellow et al. (2014)

Generator: Creates
synthetic samples drawn
from training data based on
latent vector.

i s £y
“dlatent tbr

-
.
:
‘
.
\
-

4N
-

Critic: Determines which
samples are real or
synthetic. Adaptive loss
function.

Neural
network

m Xt-1, U1, Zar1 N(0, 1)

http://www.imdb.com/character/ch0009859/mediaviewer/rm988253440



https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-linguini.png
https://upload.wikimedia.org/wikipedia/en/e/e1/Ratatouille-remy-control-linguini.png

GAN Configurations

Type |Inputs

x” and U1

Example: XU-med-w

I

Type Type Noise Time
Correlation

S U

Estimated from
offline

deterministic U;

residual
autocorrelation




Weather Forecast and Climate Run Summary Statistics

Weather forecasts were performed for 750
initial conditions with 50 ensemble members for
each forecast.

GAN parameterized models with X-only input
have lower RMSE than poly but are
overdispersive

RMSE and Spread
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Climate analysis: 20,000 MTU integration
(~270 “years”), discard first 2,000 MTU (30
“years”) as spinup.

PDF measures of parameterized model
climate compared to truth run shows some
of the stochastic GAN parameterizations
helps improve climate representation
compared to polynomial fit
parameterizations (analogous to current day
climate model parameterizations)
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Smaller Hellinger distance: forecast pdf closer to ‘true’ pdf



Summary

Mean bias is reduced in stochastic prediction models

Extreme weather events are better represented

High frequency perturbations have nonlinear rectifications improving low frequency
variability in models

Machine learning approaches can be used to improve both weather and climate forecasts
and uncertainty in these forecasts



‘| believe that the ultimate climate models..will be stochastic, ie random numbers will appear
somewhere in the time derivatives”

- Lorenz (19795).













Ensemble Kalman Filter

Ensemble
Forecast

Observation
Operator

Observation
Error



Ensemble Kalman Filter

Ensemble

Observation

S

Observation .
X t Kalman Gain
pErator (weights)

Error



Ensemble Kalman Filter

Ensemble
| Covariance
Forecast
TS
Observations ~
Observation » Kalman Gain
Operator (weights)

Error




Generating Training Data

Generate “true” trajectory

by integrating Lorenz system

Generate synthetic observations by
adding normally distributed noise

Assimilate synthetic
observations with EnKF

Parameter

Value

Assimilation Time Step

0.05 Model Units/6 Hours

Max Time

2000 Model Units

Localization Distance

5 grid points

Inflation Factor

1 (no inflation)

Observation Error Standard
Deviation

30% of climatological standard
deviation

Ensemble Size

100




Regeneration of Ensemble

0.2 -

OO | —

e Adjust forecast perturbations to
match standard deviations y

e Weighted average of forecast and
adjusted perturbations (tuned)

4 -2 0 2 4 000 025



SHAP Values Quantify impact of Input Features

e “Explainable Al”
e SHAP values approximate the contribution to the
output (prediction) magnitude from each input

val Black Box

Output

https://blog.mI.cmu.edu/2019/05/17/exp|aining-a-black—box-uh

variational-information-bottleneck-approach/

Input




SHAP Values for Linear Regression Model

e Linear regression model:

Y= Zcifﬂi

e SHAP values approximate the contribution to the
output (prediction) magnitude from each input

variable
SHAP values for input variable i: QS’L — C’i (:E’L o E[x’L])

Model prediction as a function of SHAP values: I/ — b [y] — Z (Q%) (5177, — K [ajz] )
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Impact on:
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e EXxpect:

o Monotonic
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o Value at 2 greater
thanat1lor3

Impact of:
Innovation

Standard Deviation ]




Conclusions

e A simple neural network can be trained to emulate a
traditional DA method

e Using a trained network on high-resolution data
Improves accuracy in an augmented method

e Explainable Al methods suggest that the network
learns the correlation structure of the underlying
system



