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Part I:
Estimating uncertainty and confidence intervals
using the bootstrap (and/or the CLT)



What is the bootstrap?
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We calculate
uncertainties from this
distribution!



Don’t believe me? Let me show you in code!

https://github.com/AdamSykulski/OceanUQ




The bootstrap

The advantages

» Very simple method to understand and implement for calculating
uncertainty

» Does not make distributional assumptions on the data or the distribution
of the point estimate

» No need to collect more data!

The disadvantages

» Sample may not be representative

» As with all statistical methods, sensitive to small sample sizes
» Data might not be independent (e.g., a time series)

» All of the above can give misleading uncertainty measures!



Part ll: Time Series and Spectral Analysis



Consider a basic sinusoid:
n(t) = asin(wt + @)
e aisthe amplitude.

e isthe phase.

e wisthe angular frequency.
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We can represent more complicated functions as a sum of sinusoids:

Za sin(wt 4+ p(w))

with different amplitudes and phases for each component



The power spectrum: discrete frequency

The power spectrum is then defined as

In our example:




We could keep going ... but what if our time series
process lives at all frequencies and is stochastic?

This is the field of spectral analysis!



To proceed we require some notation...

e z(t) : continuous real-valued stationary process, t € R

e x; : discrete real-valued stationary process, t € Z

e w : angular frequency, w = 27 f (f is measured in hertz)
e 7 : time-lag (positive or negative)

o i =+/—1

To keep things tidy we will assume x(t) (or x;) is zero mean



The power spectral density

Fourier Transform: f,(w) = [ xz(t)e"™!dt, weR

— OO0

Inverse Fourier Transform: z(t) = 5= [*__ fo(w)e™'dw, teR

, 2
Power Spectral Density: S, (w) = limp_, o E (% ‘ | TT x(t)e_“‘)tdt‘ )

Relationship with autocovariance sequence s, (7) = E[x(t)x(t — 7)]:

Se(w) = [T sx(T)e™™Tdr <= s,(7) = 5= [~ Se(w)e™ dw

Percival and Walden, Spectral Analysis for Univariate Time Series, page 65



Estimating from time series data

, 2
Theory: S, (w) = limp_, o E (% ‘fipT x(t)e—mtdt‘ )

Practice: Observe some sample Xq,..., Xy at intervals A such that

N 2
S(w) = ~ ZXte_iwt
t=1

This is called the periodogram and is defined for w € [—7 /A, w/A] where 7w/A
is the Nyquist frequency.



White noise process

Ty =&, & ~N(0,1)

time series power spectral density
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Auto-regressive process: AR(1)

It = 0.951375_1 -+ Et, Et N~ N(O, 1)
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Moving average process: MA(1)

s =4 — 0.7e4_1, & ~N(0,1)
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Oceanographic Drifter Data
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Drifter velocities for:
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Represent particle velocities as complex-valued time series:
Zt = U + ’i’Ut



Periodogram for velocities from:
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Periodogram for velocities from:
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Periodogram for velocities from:

Power (Log10 m? s cpd '1)
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Sampling creates uncertainty

, 2
Theory: S, (w) = limp_, o E (% ‘fTT x(t)e‘“"tdt‘ )

Practice: Observe some sample Xq,..., Xy at intervals A such that

N 2
S(w) = ~ ZXte_iwt
t=1

This is called the periodogram and is defined for w € [—7 /A, w/A] where 7w/A
is the Nyquist frequency.



Auto-regressive process: AR(1)

It = 0.951375_1 -+ Et, Et N~ N(O, 1)
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AR(I) Ly = O.9£Ct_1 + Ets Et N(07 1)

o2
Se(w) = 2
() 1 — 2¢1 cos(w) + @7
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AR(4)

Ty = 2.7607z,_1 — 3.81062;_2 + 2.6535z;_3 — 0.9238z4_4 + €1, £¢ ~ N(0,1)
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“More lives have been lost looking at the periodogram
than by any other action involving time series”

John W. Tukey



Remember: sampling creates uncertainty

, 2
Theory: S;(w) = lim7_,o E (% ‘fTT w(t)e‘“"tdt| >

2
Practice: Sx (w ‘Zt . _“"t‘ /N

Convolution: E{SX } [[ Flw—w)Sy(w)dw'

where F(-) is the Fejér kernel: F(w) = 55 S;ﬁgﬁ%?)

Percival and Walden, page 198



AR(4)

Ty = 2.7607z,_1 — 3.81062;_2 + 2.6535z;_3 — 0.9238z4_4 + €1, £¢ ~ N(0,1)
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X (t) ~ Matérn(A =1, =0.6,h =0.1)

A2
Se(w) =
:1:( ) (w2 + hQ)a
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X (t) ~ Matérn(A =1, =0.6,h =0.1)

A2
Se(w) =
:1:( ) (w2 + h2)a
: time series 20 power spectral density
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What’s wrong this time? Sampling 1sn’t (usually)

continuous...
aliasing
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Percival and Walden, page 97



aliasing
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X time series sample X,

—continuous process x(t)?
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aliasing
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i X time series sample x,
—continuous process x(t)?
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In 2-D the aliasing problem 1s also known as
“the wagon-wheel effect”

[Link to Video



https://www.youtube.com/watch?feature=player_detailpage&v=jHS9JGkEOmA

X(t) ~Matérn(A =1,a = 0.6,h = 0.1)

Sa(w)= ), (w + 27k)2 + h2)°
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Nonstationarity: Time-frequency “spectrograms™
and Heisenberg-Gabor uncertainty

ONE DOES NOT SIMPLY
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Bonus Section: How to bootstrap a time series!



Other approaches include:
Block bootstrap PP
s » Parametric model fitting and then

' ' ' ' sampling from the model

5 2 < 1 3
/\—\fVu U W&MN“NKNM ' > Spectral analysis methods which

in essence sample from the
, . , : : , , , spectrum and then Fourier
, 1M W ™ transform back
s = . = T & S » For existing Python code for the
Bootstrap Data block bootstrap checkout the
B R F ARCH 6.3.0 package by Kevin

Sheppard:

https://doi.org/10.5281/zenodo.
593254

Resampled Blocks

Reference: Politis, D. N., & White, H. (2004). Automatic Block-Length Selection for the Dependent Bootstrap.
Econometric Reviews, 23(1), 53-70.


https://doi.org/10.5281/zenodo.593254
https://doi.org/10.5281/zenodo.593254

