Statistics for UQ and Time Series

Dr Adam Sykulski, Imperial College London

Outline

 Estimating uncertainty and confidence intervals using the bootstrap (and/or the CLT)

2. Time Series and Spectral Analysis

3. Bonus section

Part I:

Estimating uncertainty and confidence intervals using the bootstrap (and/or the CLT)

What is the bootstrap?

Don't believe me? Let me show you in code!

https://github.com/AdamSykulski/OceanUQ

The bootstrap

The advantages

- Very simple method to understand and implement for calculating uncertainty
- > Does not make distributional assumptions on the data or the distribution of the point estimate
- > No need to collect more data!

The disadvantages

- Sample may not be representative
- > As with all statistical methods, sensitive to small sample sizes
- > Data might not be independent (e.g., a time series)
- > All of the above can give misleading uncertainty measures!

Part II: Time Series and Spectral Analysis

Consider a basic sinusoid:

$$\eta(t) = a \sin(\omega t + arphi)$$

- a is the amplitude.
- φ is the phase.
- ω is the angular frequency.

We can represent more complicated functions as a sum of sinusoids:

$$\eta(t) = \sum_{\omega} a(\omega) \sin(\omega t + arphi(\omega))$$

with different amplitudes and phases for each component

The power spectrum: discrete frequency

The power spectrum is then defined as

$$S(\omega) = |a(\omega)|^2$$

In our example:

We could keep going ... but what if our time series process lives at all frequencies and is stochastic?

This is the field of spectral analysis!

To proceed we require some notation...

- x(t): continuous real-valued stationary process, $t \in \mathbb{R}$
- x_t : discrete real-valued stationary process, $t \in \mathbb{Z}$
- ω : angular frequency, $\omega = 2\pi f$ (f is measured in hertz)
- τ : time-lag (positive or negative)
- $i = \sqrt{-1}$

To keep things tidy we will assume x(t) (or x_t) is zero mean

The power spectral density

Fourier Transform:
$$f_x(\omega) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$$
, $\omega \in \mathbb{R}$

Inverse Fourier Transform:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_x(\omega) e^{i\omega t} d\omega, \quad t \in \mathbb{R}$$

Power Spectral Density:
$$S_x(\omega) = \lim_{T \to \infty} \mathbb{E}\left(\frac{1}{2T} \left| \int_{-T}^T x(t) e^{-i\omega t} dt \right|^2\right)$$

Relationship with autocovariance sequence $s_x(\tau) = \mathbb{E}[x(t)x(t-\tau)]$:

$$S_x(\omega) = \int_{-\infty}^{\infty} s_x(\tau) e^{-i\omega\tau} d\tau \iff s_x(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_x(\omega) e^{i\omega\tau} d\omega$$

Percival and Walden, Spectral Analysis for Univariate Time Series, page 65

Estimating from time series data

Theory:
$$S_x(\omega) = \lim_{T \to \infty} \mathbb{E}\left(\frac{1}{2T} \left| \int_{-T}^T x(t) e^{-i\omega t} dt \right|^2\right)$$

Practice: Observe some sample X_1, \ldots, X_N at intervals Δ such that

$$\hat{S}(\omega) = \frac{\Delta}{N} \left| \sum_{t=1}^{N} X_t e^{-i\omega t} \right|^2$$

This is called the *periodogram* and is defined for $\omega \in [-\pi/\Delta, \pi/\Delta]$ where π/Δ is the *Nyquist frequency*.

White noise process

$$x_t = \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, 1)$$

Auto-regressive process: AR(1)

$$x_t = 0.9x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, 1)$$

Moving average process: MA(1)

$$x_t = \varepsilon_t - 0.7\varepsilon_{t-1}, \quad \varepsilon_t \sim \mathcal{N}(0, 1)$$

Oceanographic Drifter Data

Drifter velocities for:

Represent particle velocities as complex-valued time series:

$$z_t = u_t + iv_t$$

Periodogram for velocities from:

Periodogram for velocities from:

Periodogram for velocities from:

Sampling creates uncertainty

Theory:
$$S_x(\omega) = \lim_{T \to \infty} \mathbb{E}\left(\frac{1}{2T} \left| \int_{-T}^T x(t) e^{-i\omega t} dt \right|^2\right)$$

Practice: Observe some sample X_1, \ldots, X_N at intervals Δ such that

$$\hat{S}(\omega) = \frac{\Delta}{N} \left| \sum_{t=1}^{N} X_t e^{-i\omega t} \right|^2$$

This is called the *periodogram* and is defined for $\omega \in [-\pi/\Delta, \pi/\Delta]$ where π/Δ is the *Nyquist frequency*.

Auto-regressive process: AR(1)

$$x_t = 0.9x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, 1)$$

AR(1)

$$x_t = 0.9x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, 1)$$
$$S_x(\omega) = \frac{\sigma_{\varepsilon}^2}{1 - 2\phi_1 \cos(\omega) + \phi_1^2}$$

AR(4)

$$x_t = 2.7607x_{t-1} - 3.8106x_{t-2} + 2.6535x_{t-3} - 0.9238x_{t-4} + \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$

$$S_x(\omega) = \frac{\sigma_{\epsilon}^2}{|1 - \sum_{k=1}^4 \phi_k e^{-ikw}|^2}$$

"More lives have been lost looking at the periodogram than by any other action involving time series"

John W. Tukey

Remember: sampling creates uncertainty

Theory:
$$S_x(\omega) = \lim_{T \to \infty} \mathbb{E}\left(\frac{1}{2T} \left| \int_{-T}^T x(t) e^{-i\omega t} dt \right|^2\right)$$

Practice:
$$\hat{S}_X(\omega) = \left| \sum_{t=1}^N X_t e^{-i\omega t} \right|^2 / N$$

Convolution:
$$\mathbb{E}\left\{\hat{S}_X(\omega)\right\} = \int_{-\pi}^{\pi} \mathcal{F}(\omega - \omega') S_x(\omega') d\omega'$$

where
$$\mathcal{F}(\cdot)$$
 is the Fejér kernel: $\mathcal{F}(\omega) = \frac{1}{2\pi N} \frac{\sin^2(N\omega/2)}{\sin^2(\omega/2)}$

$$x_t = 2.7607x_{t-1} - 3.8106x_{t-2} + 2.6535x_{t-3} - 0.9238x_{t-4} + \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$

$$S_x(\omega) = \frac{\sigma_{\epsilon}^2}{|1 - \sum_{k=1}^4 \phi_k e^{-ikw}|^2}$$

$$X(t) \sim \mathrm{Mat\acute{e}rn}(A=1, \alpha=0.6, h=0.1)$$

$$S_x(\omega) = \frac{A^2}{(\omega^2 + h^2)^{\alpha}}$$

$$X(t) \sim \mathrm{Mat\acute{e}rn}(A=1, \alpha=0.6, h=0.1)$$

$$S_x(\omega) = \frac{A^2}{(\omega^2 + h^2)^{\alpha}}$$

What's wrong this time? Sampling isn't (usually) continuous...

Percival and Walden, page 97

In 2-D the aliasing problem is also known as "the wagon-wheel effect"

Link to Video

$$X(t) \sim \text{Matérn}(A = 1, \alpha = 0.6, h = 0.1)$$

$$S_x(\omega) = \sum_{k=-\infty}^{\infty} \frac{A^2}{((\omega + 2\pi k)^2 + h^2)^{\alpha}}$$

Nonstationarity: Time-frequency "spectrograms" and Heisenberg-Gabor uncertainty

Bonus Section: How to bootstrap a time series!

Block bootstrap

Other approaches include:

- Parametric model fitting and then sampling from the model
- Spectral analysis methods which in essence sample from the spectrum and then Fourier transform back
- For existing Python code for the block bootstrap checkout the ARCH 6.3.0 package by Kevin Sheppard:

https://doi.org/10.5281/zenodo. 593254

Reference: Politis, D. N., & White, H. (2004). Automatic Block-Length Selection for the Dependent Bootstrap. Econometric Reviews, 23(1), 53–70.