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Motivation: Argo floats
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Need for spatio-temporal interpolation

??
=⇒

Many components of the ocean observing system produce in situ point
observations (Argo floats, moorings, drifters, gliders, ships,...)

In order to do science with these data, it is often necessary to solve the
spatio-temporal interpolation problem of mapping the point observations
onto a regular grid over space and time
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Outline

In this lecture, we are going to develop the theory and practice of
spatio-temporal interpolation through Gaussian process (GP) regression

This yields the standard spatio-temporal interpolants widely used in
oceanography

Note, however, that GPs are not the only way of arriving at these
same interpolants and other interpolants are also possible

Outline:

1 A primer on Gaussian processes

2 Mean functions, covariance functions and parameter estimation

3 Gaussian process regression for interpolating oceanographic data
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Stochastic processes for spatio-temporal data

We take here the perspective that spatial fields are random realizations of
an underlying stochastic process

A (continuously indexed) stochastic process is a collection of random
variables {f (x)} indexed by x ∈ D ⊂ Rd , where f (x) is random for each x

Equivalently, we can understand f (x) as a random function of x

Cases of specific interest in oceanography:

Temporal processes: D ⊂ R, x represents time

Spatial processes: D ⊂ R2, x represents space [x = (lon, lat)]

Spatio-temporal processes: D ⊂ R3, x represents space and time [x = (lon, lat, t)]

(Figure: Wikipedia) 0 1 2 3 4 5
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A Primer on Gaussian Processes
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Multivariate Gaussian distribution

A random vector y ∈ Rn has an n-variate Gaussian distribution, denoted
by y ∼ N(m,Σ), if its pdf is given by

p(y |m,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(y − m)TΣ−1(y − m)

)
This is parameterized by the mean vector m ∈ Rn and the symmetric and
positive definite covariance matrix Σ ∈ Rn×n so that

E[yi ] = mi , for all i = 1, . . . , n

Cov[yi , yj ] = Σij , for all i , j = 1, . . . , n
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Multivariate Gaussian distribution

Multivariate Gaussian random vectors have a number of nice properties

For example, consider the decomposition

y =

[
y1
y2

]
, m =

[
m1

m2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then the marginal distribution of y1 is

y1 ∼ N(m1,Σ11)

and the conditional distribution of y1 given y2 is

(y1|y2) ∼ N(m1 +Σ12Σ
−1
22 (y2 − m2),Σ11 −Σ12Σ

−1
22 Σ21)

By rearranging the elements of y , we can have any subset of elements in
the component y1 and the remaining elements in the component y2. In
other words:

Any subset of elements of y has a multivariate Gaussian distribution

Any subset of elements of y conditioned on the rest has a
multivariate Gaussian distribution
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Gaussian process: Definition

Now, imagine that n is very large. We then have a large collection of
random variables

{y1, y2, . . . , yn−1, yn} = {yi}ni=1,

whose joint behavior is described by the multivariate Gaussian distribution.
This collection is indexed by the discrete index i ∈ [n].

A Gaussian process is an infinite-dimensional generalization of this to a
collection of random variables indexed on a continuum.

In order words, a Gaussian process is a stochastic process satisfying the
following:

Definition

A Gaussian process is a random function f (x) whose values
f (x1), . . . , f (xn) at any finite set of inputs x1, . . . , xn follow a multivariate
Gaussian distribution.
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Gaussian process: Definition

Definition

A Gaussian process is a random function f (x) whose values
f (x1), . . . , f (xn) at any finite set of inputs x1, . . . , xn follow a multivariate
Gaussian distribution.

A Gaussian process is parameterized by a mean function m(x) and a covariance
function k(x1, x2) so that

m(x) = E[f (x)], for all x
k(x1, x2) = Cov[f (x1), f (x2)], for all x1, x2.

We then denote f ∼ GP(m(x), k(x1, x2)).

The covariance function k(x1, x2) has to be such that the covariance matrix of
[f (x1), . . . , f (xn)]T for any inputs xi , i = 1, . . . , n, is positive definite.

Functions k(x1, x2) with this property are called positive definite. There are
various well-known families of positive definite functions, but it’s good to keep in
mind that not all bivariate functions are valid covariance functions.
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Gaussian process: Inference

Let f ∼ GP(m(x), k(x1, x2)) and assume that we get to observe

y1 = f (x1), y2 = f (x2), . . . , yn = f (xn).

What can we then say about y∗ = f (x∗) at some unobserved location x∗?

Since y∗ is a random quantity, our task is to predict y∗.

Denote yn = [y1, . . . , yn]
T. Then, by definition:

[
y∗
yn

]
=


y∗
y1
...
yn

 ∼ N(m,Σ), where m =


m(x∗)
m(x1)

...
m(xn)

 =

[
m(x∗)
mn

]

and

Σ =


k(x∗, x∗) k(x∗, x1) · · · k(x∗, xn)
k(x1, x∗) k(x1, x1) · · · k(x1, xn)

...
...

. . .
...

k(xn, x∗) k(xn, x1) · · · k(xn, xn)

 =

[
k(x∗, x∗) kT

∗
k∗ Kn

]
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Gaussian process: Inference

Then, by the properties of the multivariate Gaussian distribution, the
conditional distribution of y∗ given yn is

(y∗|yn) ∼ N(m(x∗) + kT
∗ K−1

n (yn − mn), k(x∗, x∗)− kT
∗ K−1

n k∗)

Since we are trying to predict y∗ given yn, this is also known as the
predictive distribution of y∗. We can directly extract from this the
predictive mean

ŷ∗ = E[y∗|yn] = m(x∗) + kT
∗ K−1

n (yn − mn)

and the predictive variance

σ̂2
∗ = Var[y∗|yn] = k(x∗, x∗)− kT

∗ K−1
n k∗.

We can then predict y∗ using ŷ∗. We know from Monday that this is the
mean squared error optimal predictor of y∗.

The predictive uncertainty can be quantified using the 1− α prediction
interval which is given by [ŷ∗ − z1−α/2σ̂∗, ŷ∗ + z1−α/2σ̂∗].
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Gaussian process: Inference

As a result, we conclude that y∗ should be predicted using

ŷ∗ = m(x∗) + kT
∗ K−1

n (yn − mn)

and the uncertainty of the prediction at level 1− α is given by

[ŷ∗ − z1−α/2σ̂∗, ŷ∗ + z1−α/2σ̂∗]

This has various names depending on the context, including kriging
(spatial statistics / geostatistics), objective mapping (oceanography) or
optimal interpolation (atmospheric science)
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Gaussian process: Inference

Notice also that we can repeat this same calculation for other x∗’s to obtain
pointwise predictions of f (x) on a fine grid, for example.

We can also repeat the same steps for the vector

[y1∗, . . . , yp∗, y1, . . . , yn]
T = [f (x1∗), . . . , f (xp∗), f (x1), . . . , f (xn)]T

to obtain the predictive distribution of [y1∗, . . . , yp∗]
T given [y1, . . . , yn]

T,
which also provides the predictive covariance between different locations xi∗.

Key observation: Because finite evaluations of a Gaussian process follow a
multivariate Gaussian distribution, we immediately know how to make a
finite number of predictions given a finite number of observations.
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Illustration
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Gaussian process regression

In practice, we do not necessarily want to force the prediction to go through the
observations y1, . . . , yn.

Therefore, the following Gaussian process regression model is commonly employed:

yi = f (xi ) + εi ,

where f ∼ GP(m(x), k(x1, x2)), εi
i.i.d.∼ N(0, σ2) and f is independent of the εi ’s.

The extra term εi is called the nugget effect and corresponds to measurement
error, unexplained variation or microscale variation, depending on the context.

One might then be interested in predicting either f∗ = f (x∗) or y∗ = f (x∗) + ε∗

The predictive distribution in the first case is

(f∗|yn) ∼ N(m(x∗)+kT
∗ (Kn+σ2I )−1(yn−mn), k(x∗, x∗)−kT

∗ (Kn+σ2I )−1k∗)

The latter case is otherwise the same but the predictive variance is

Var[y∗|yn] = Var[f∗|yn] + σ2 = k(x∗, x∗)+σ2−kT
∗ (Kn+σ2I )−1k∗
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Illustration
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Figure: GP realization
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Figure: Conditional variance
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Figure: Conditional mean
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Figure: Conditional simulation
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Mean functions, covariance functions and
parameter estimation
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Gaussian process modeling

A Gaussian process f ∼ GP(m(x), k(x1, x2)) is parameterized by the mean
function m(x) and the covariance function k(x1, x2)

In order to model data using a GP, one needs to decide how to choose
these functions.

A significant portion of GP literature revolves around this question.

Sometimes there is ambiguity with regards to what portion of the data
should be explained using m(x) and what portion using k(x1, x2),
especially if there is only a single realization of f

“One person’s mean structure is another person’s covariance structure”

Some authors claim that one can simply set m(x) = 0 without loss of
generality, but it’s not that simple

In practice, we tend to use certain parametric classes of functions for both:

m(x) = m(x ;β), k(x1, x2) = k(x1, x2;θ)
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Choice of the mean function

The mean function m(x) should be flexible enough to model the average
shape of the random function f (x), but also rigid enough to not fit the
stochastic fluctuations in the data

It can be difficult to strike a balance here, but luckily the final predictions
are usually quite robust against modest misspecification of the mean

Common choices for m(x ;β):
Linear in x and β: m(x ;β) = β0 +

∑d
i=1 βixi

Splines (especially in 1D): m(x ;β) =
∑p

i=1 βiBi (x), where Bi (·) are
B-spline basis functions

Nonlinear (in both x and β) regression functions (e.g., neural nets)
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Choice of the covariance function

Recall that k(x1, x2) = Cov[f (x1), f (x2)].

Which bivariate function k(·, ·) to use? (Remember that k(·, ·) needs to
be positive definite.)

A common assumption is to say that k(x1, x2) is stationary (i.e.,
translation invariant): k(x1, x2) = k(x1 − x2)

Furthermore, it is common to assume isotropy

k(x1, x2) = k(∥x1 − x2∥)

or geometric anisotropy

k(x1, x2) = k(∥x1 − x2∥A),

where ∥x1 − x2∥A =
√

(x1−x2)TA (x1−x2) for a positive definite matrix A
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Choice of the covariance function

Let’s focus on the case with geometric anisotropy. Denote s = ∥x1 − x2∥A.

At this point, we need to choose the matrix A and the function k(s).

Here A controls the length scales (decorrelation scales) and orientation of
the dependence in f (x) over x .

The function k(s) controls the remaining properties of the random
function f (x), such as smoothness, periodicity, etc.
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Choice of the covariance function

Popular models for k(s) include:

Exponential: k(s) = ϕ exp(−s), ϕ > 0
f (x) continuous but not differentiable

Squared exponential: k(s) = ϕ exp(−s2), ϕ > 0
f (x) infinitely differentiable

Matérn: k(s) = ϕ21−ν

Γ(ν) s
νKν(s), ϕ > 0, where ν > 0 is a smoothness

parameter and Kν is a modified Bessel function
f (x) k times differentiable if and only if ν > k
Gives exponential for ν = 1

2 and squared exponential for ν → ∞
Has simplified form when ν is half integer, i.e., ν = 1

2 ,
3
2 ,

5
2 , . . .

For example, if we pick A = diag(1/θ21, . . . , 1/θ
2
d) and let k(s) be

exponential, then we have the following covariance model

k(x1, x2;ϕ, θ1, . . . , θd)

= ϕ exp

(
−

√(
x11−x21

θ1

)2

+

(
x12−x22

θ2

)2

+ · · ·+
(
x1d−x2d

θd

)2
)

parameterized by ϕ, θ1, . . . , θd > 0
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Illustration: Effect of covariance length scales
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(a) θ1 = 0.3, θ2 = 0.3
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(b) θ1 = 1, θ2 = 0.3
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(c) θ1 = 0.3, θ2 = 1
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(d) θ1 = 1, θ2 = 1
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Parameter estimation

Let θ denote the vector of parameters affecting to covariance
function k(x1, x2;θ)

Then the unknown parameters of the GP model are (β,θ, σ2) and we wish
to learn these parameters using the observed data yn
Various techniques for estimating these parameters exist, but the most
common approach is to use maximum likelihood.

Since yn follows a multivariate Gaussian, the log-likelihood of (β,θ, σ2) is

ℓ(β,θ, σ2) = log p(yn|β,θ, σ2)

= −1

2

[
n log(2π) + log det (Kn(θ) + σ2I )

+ (yn − mn(β))
T(Kn(θ) + σ2I )−1(yn − mn(β))

]
The estimates (β̂, θ̂, σ̂2) are those values that maximize ℓ(β,θ, σ2)

For linear mean functions, β can be solved in closed-form (for given
(θ, σ2)), but to solve (θ, σ2) one needs to typically use numerical
optimization
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Gaussian Process Regression for Interpolating
Oceanographic Data
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Gaussian process model for ocean observations

The following Gaussian process model is often used (either explicitly or implicitly)
for interpolating oceanographic observations:

yi ,j = fi (xlon,i ,j , xlat,i ,j , ti ,j) + εi ,j ,

fi
iid∼ GP(m, k), εi ,j

iid∼ N(0, σ2),

where:

yi,j is some in situ observation (temperature, salinity, oxygen,...)
i = 1, . . . ,N refers to years and j = 1, . . . , ni to observations in the ith year
xlon,i,j , xlat,i,j and ti,j are the longitude, latitude and time of yi,j
εi,j captures the sensor noise and microscale variation

This model says that year-to-year variations of the oceanographic field can be
regarded as i.i.d. realizations from a Gaussian process

In this model, the mean function (or mean field) m(·) is the climatology (long-term
average of the oceanographic field)

The mean-centered process fi (·)−m(·) is called the anomaly and the covariance
function k(·, ·) characterizes spatio-temporal dependence in these anomalies
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Mean field for ocean observations

A potential choice for the mean field is:

m(x , y , t) = β0 + β1(x − x0) + β2(y − y0)

+ β3(x − x0)(y − y0) + β4(x − x0)
2 + β5(y − y0)

2

+
6∑

k=1

γk sin

(
2πk

τ(t)

365

)
+

6∑
k=1

δk cos

(
2πk

τ(t)

365

)
+ ν1(t − t0)+ ν2(t − t0)

2,

where x is longitude, y latitude, t is Julian day, τ(t) is the yearday
corresponding to t, (x0, y0) is the mid-point of the spatial domain and t0 is
the Julian day at the mid-point of the analyzed time period

This is inspired by the Roemmich and Gilson (2009) mean fit, except that
we add linear and quadratic climatological time trend terms
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Covariance function for ocean observations

The Matérn covariance is often a good choice for physical fields

So a reasonable choice of a covariance function is

k(x1, y1, t1, x2, y2, t2) = Mν

(
−d
(
(x1, y1, t1), (x2, y2, t2)

))
,

where Mν(·) is the Matérn kernel with smoothness ν and

d
(
(x1, y1, t1), (x2, y2, t2)

)
=

√(
x1 − x2

θx

)2

+

(
y1 − y2

θy

)2

+

(
t1 − t2
θt

)2

is an anisotropic space-time distance metric with positive decorrelation
scales θx , θy and θt

For example, ν = 1/2 is often a good choice and gives:

k(x1, y1, t1, x2, y2, t2) = ϕ exp
(
−d
(
(x1, y1, t1), (x2, y2, t2)

))
If the field needs to be differentiable, can use ν = 3/2
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Locally stationary GP regression

The previous model can work well over a
small spatial domain

However, this would be a terrible model for
basin-scale or global interpolation

There are two problems:

1 The assumed mean model is too
simple over large domains

2 Any realistic oceanographic field does
not satisfy the stationarity assumption
in the covariance function

However, there is an easy fix that we have found to work well for many
oceanographic fields: use the previous model only locally within
overlapping moving windows! (Kuusela and Stein, 2018)

This approach also has major computational benefits since fits are done
using only subsets of the data and the computations can be parallelized
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Locally stationary GP regression

Estimated total variance ϕ̂+ σ̂2 for ocean heat content (15–975 m) from
Argo floats in a locally stationary GP model

Mikael Kuusela (CMU) July 17, 2024 32 / 37



Ocean heat content anomalies

(a) 02/2007 (b) 02/2010

(c) 02/2013 (d) 02/2015

Monthly ocean heat content anomalies (15–975 m) interpolated from Argo
float data using a locally stationary Gaussian process
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UQ with local conditional simulations

Conditional mean
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UQ with local conditional simulations

Conditional simulation realization 1
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UQ with local conditional simulations

Conditional simulation realization 2
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UQ with local conditional simulations

Conditional simulation realization 3
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UQ with local conditional simulations

Conditional mean (black) and 20 conditional simulations (gray) for upper
ocean OHC anomalies
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UQ with local conditional simulations

Upper ocean OHC anomalies with 68% (dark gray) and
95% (light gray) uncertainties
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Additional reading

The following textbooks are good starting points for learning more:

C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006

M.L. Stein, Interpolation of spatial data: Some theory for kriging,
Springer, 1999

N.A.C. Cressie, Statistics for spatial data, Revised edition, John Wiley
& Sons, 1993

N. Cressie and C. K. Wikle, Statistics for spatio-temporal data, Wiley,
2011

A.E. Gelfand, P.J. Diggle, M. Fuentes, and P. Guttorp (editors),
Handbook of Spatial Statistics, CRC Press, 2010
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