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On the inappropriate use of
variance-preserving spectra

| have been surprised by the continuing use of variance-preserving spectra in the
oceanographic literature as a tool to diagnose periodicities in time series (this does not
seem to happen in the purely climate literature ... we, oceanographers, are often a bit
behind). Since | don’t think | know much, | often seek out the help of a couple of
statistician friends that deal with time series (like all the time). | have casually asked them:
“Why do you think people use variance-preserving spectra?”. Their answer was revealing:
BY SHANE ELIPOT they did not even know what a variance-preserving spectrum was! Once | explained to
them (see below), they were even more confused. They also wondered what was wrong
with us (oceanographers). On a more serious note, what concerns me is that we

¢> 2 COMMENTS collectively spend millions of tax-payer dollars to obtain amazing time series of
oceanographic variables (such as oceanic volume transport), and sometimes analyze
them with the wrong tools, unfortunately. We need to collectively do better.

3 JANUARY 20, 2020

So, | have decided to write a little note to demonstrate why variance-preserving spectra
should not be used to make conclusive statements about periodicity in a time series, and
to suggest alternative methods. | have recently become a research assistant professor,
and thus | am trying to get a bit more in the teaching side of things (I do not teach at my
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Goal is to go over 3 case studies

of uncertainty derivations and utilizations

 Elipot et al. (2016), A global surface drifter data set at hourly resolution, JGR: Oceans,
with Rick Lumpkin, Renellys C. Perez, Jonathan M. Lilly, Jeffrey J. Early, and Adam Sykulski
doi: 10.1002/2016JC011716

-> Examples1 &2

 Elipot et al. (2022), A dataset of hourly sea surface temperature from drifting buoys, Scientific Data,
with Adam Sykulski, Rick Lumpkin, Luca Centurioni, and Mayra Pazos
doi: 10.1038/s41597-022-01670-2

-> Example 3



Example 1:
Characterizing errors and using uncertainty
estimates




A global surface drifter data set at hourly resolution

Elipot et al. 2016

« Goal: produce time series of 24
drifter positions and velocities 23.98-
estimates, with uncertainty 25967
estimates, at regular, hourly i
intervals. S
23.9

- Obstacle: the observations are 2586 -
uneven in time and uncertain. on o
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The Global Drifter Program (GDP)
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https://www.aoml.noaa.gov/phod/gdp/index.php

- Funded by the U.S. National Oceanic and Atmospheric Administration (NOAA), the
GDP maintains, with international partners, a global array of satellite-tracked drifters to
meet the need for an accurate and globally dense set (5°x5°) of in situ observations of
near-surface currents, sea surface temperature (SST), and Sea Level Pressure.

Unknown (54)

Tracking system: Argos or GPS

Sensors
Sea Surface Temperature
sensor and various
measuring systems

The buoys have some
form of subsurface

drogue or sea anchor

https://www.aoml.noaa.gov/phod/gdp/index.php



The Global Drifter Program (GDP)
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« The GDP data are transmitted to operational users via the WMO Global Telecommunication
System (GTS) and later distributed to research users in the form of quality-controlled (QC),
delayed mode products. The release of QC data products is led by the Data Assembly Center
(DAC) of the GDP at the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML),

Miami FL.



Fit a [inear model within a
sliding window to obtain

estimates of longitude or
latitude at hourly intervals

What were we trying to do?

X (Longitude or Latitude)

h ~ bandwidth

linear model

(time)

t—2tr—1 tr,  lo Tk+1  trgo

Observation interpolation time
times



What were we trying to do?

Mathematical models for longitude and latitude:

o(t; B%) = B§ + BL(t — to)
0(t;8°) = BY + Bt —to)

We seek a set of parameters 3 = :ﬂ"s,ﬁe- = [ﬁg,ﬁf,ﬁg,ﬁf]

that maximizes a weighted probability of the observed data, or weighted
likelihood:

L) =11 {P :(I)ka@kvfb(tk;ﬁd))’e(tk;ﬁe): }’“’k

k=1

p is the PDF describing whether a location observation (®x,O)

will yield the true location (¢(tx),0(tr)) —} That’s the pdf of the errors!



Characterizing drifter position errors

by fitting PDF models

-43.75 -43.7 -43.65 -43.6 -43.55 -43.5
Longitude

Adp=d — o
AO =0 —0

error is observation minus truth

Black dots: GPS positions taken as “truth”

Colored squares: Argos position estimates
with location error characterized by a class,
associated with an equivalent radius error r
assumed to be representative of one
standard deviation of the errors:

Class 3: r <250 m
Class 2: r =250-500 m
Class 1: r =500-1500 m
Class O: r > 1500 m



Characterizing drifter position errors
by fitting PDF modelsi¢

Elipot et al. 2016
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Characterizing drifter position errors
by fitting PDF models

Normal PDF p(z|p, o) = : e 3(554)
o2
| e [o1z=m\] "
t location-scale PDF - p(2lp,0,v) = a\/ﬁr(g) 1 V( 5 )

(nonstandardized Student’s t PDF)

K location parameter

0 scale parameter

All Classes
Log PDF
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| 1
o

V shape parameter
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Characterizing drifter position errors
by fitting PDF models

3210123

1/60 of Degree

3210 1

1/60 of Degree

2 3 0

1 2 3
1/60 of Degree

All Classes

Model quantiles
ADMNDOMN DS

A PNDODN P

Class 1
Model quantiles

O =N W

L
—_l

Class 2
Model quantiles
W N

Class 3
Model quantiles
WNN O —-=-DMNDWw

4-202 4

42024

/

3210123

/
//
y

-3-2-1 012 3

Data quantiles

(1/60 of Degree)

4202 4

/
//
/.

42024

_/
//
:

3210123

' ocatlon scale

/

Normal

3-2-1 012 3

Data quantiles

(1/60 of Degree)

A O (1/60 of Degree)
B I N L

A O (1/60 of Degree)
v 4o = oW

Quantile-quantile plots

All Classes

32401 2 3
A ® (1/60 of Degree)

Class 2

32401 2 3
A @ (1/60 of Degree)

o
o

Log10 Freq.
A © (1/60 of Degree)

R R L

Log10 Freq.
A © (1/60 of Degree)

R R L

N

1 0 1

3 -2
A ® (1/60 of Degree)

2 3

Class 3

-1 0 1

3 -2
A ® (1/60 of Degree)

2 3

L
—

N

L L
—

N
o

o
Log10 Freq.

o o
(@)

N W
o

o
Log10 Freq.

S
(6]

2D histogram of errors

Elipot et al. 2016



Characterizing drifter position errors

Weighted likelihood: L(8) = [] {»

log-likelihood:

lat, lon errors
independent:

by fitting PDF models

N

k=1

I(B) = EN:wk Inp -<I>k,@k,¢ (tk;,@¢) 0 (tk;ﬂe)-
k=1 ' _

:(I)k, Ok, ¢ (tk§,8¢) , 0 (tk;ﬂg)

:‘Pk, ¢ (tk; ﬁ¢)

and consider that the errors are distributed like t PDFs ...

:@k, Ok, d(tr; B?), 0(tx; ,39):

-

04,0 (14:6°)




Characterizing drifter position errors

by fitting PDF models
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ocation, scale, and shape parameters of the t PDF of

ongitude or latitude observations with index k.

s(t; B%) =B + BL(t —to)
0(t; 8°) = B8+ BI(t —to)

Evaluate at t = to to obtain fitted/estimated positions ...



Example 2:
Deriving uncertainty estimates




Deriving uncertainty estimates of the position estimates
Using a bootstrap method

We chosetouse N =4
observation points to

X (Longitude or Latitude)

X, s : obtain each 8= (82,657,655, 3¢
X : at hourly time scale
Xk—1 g . I bandwidth

How to get Var[ﬂA;”] [

Asymptotic theory:
(time N — 400, Bj—ﬁjNN(OaU)

lk—1 tr  to  tr+1  Tk42

Observation times interpolation
time

Instead, use a bootstrap method, the jackknife!
Re-estimate B 4 times using three observations out of four to obtain Var[Bf]



Deriving uncertainty estimates of the position estimates
Using a bootstrap method

Re-calculate estimates 4 times using three observations out of four, in
order to obtain s; = Var |,

o Bi — B;
" ” t —
» t statistic™: U Sj/m
» O95% confidence interval:

N S N S -
— 1la — - ,Pj +t1-q — -
[53 /2,N 1 m 6] 1 /2,N 1 \W]
ta/Q,N—l — tl—a/Q,N—l = 3.1824 with a = 0.05




Validation of uncertainty estimates
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Two-dimensional histograms of the
square root of estimated versus
observed error variance for each
different methods of estimation.

We considered 3366 10-day trajectory
segments with 50% overlap in order to
calculate the variance of the observed
longitude and latitude error time series
for each segment, which we compare to
the mean of the estimated variances for
longitude and latitude



Example 3:
Deriving uncertainty estimates




A dataset of hourly sea surface temperature from
drifting buoys

Elipot et al. 2022 S

« Goal: produce time series of 3 — 3
drifter SST estimates, with BUREEE W orocue
uncertainty estimates, at Y Y. . ...

1
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Time series of SST observations from drifter ID 55366
[Argos-tracked drifter, SVP type, built by Pacific Gyre]

|Driftelr GDlP ID |55366|

45 - :

Outliers

40 -
35

25

20 - | ' 24N 4 Drifter GDP ID 55366

30°W
| | | | | | | | |
I L N X Y :
S, B T Y B % G U % G G G G U, 10.605 SST observations
o n, w7 ) % U % % 4, % n 7 n, '

over 408 days



Time series of temporal intervals (At) between consecutive observations:

250 Drifter SOF D po% This drifter sampled every
.. 60 s, averaged every 15
07 c T - samples, and transmitted
o e e e o e - every 90 s,
g . % : | ; il < Argos satellite orbital
5 period (101.47 min)
, Uneven sampling




Time series of SST observations from drifter ID 55366

For 85% of drifters, observations are derived from a SST equation:

|Driftelr GDlP ID |55366|

1 1 7 T T 1T 177 1T 1 171 T« ‘ S0l =an + b
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°C

- DrifterI GDP IDI 00366

. Quantized

iZfZ o . - - observations

Z: T T - " T Causes an added

774 - L L e - error called
quantization error

. a = 0.00 resolution
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“Kriging” solution at 6-hour time steps

| DrifterI GDP IDI HH366 |

I I I I I I I I I I I I I I I I I I

6-hourly “kriged” estimates @

00:00, 06:00, 12:00.18:00
(Hansen and Poulain, 1996):

= Optimal interpolation
method

(using 5 observations before
and after estimation times)



Methodology: process model

The goal is to estimate SST at time t = tk
(which is observation time or hourly time steps)

process model  8i = sm(ti; tk) + orer

SN T

observations at times ti = SST model + noise

The noise component, &, is expected to be zero-mean, to have unit variance

... locally scaled by ox where c?kis the error variance of the observations around
time tx.



Methodology: models

process model: s; = sm(ti;tx) + oker

model of SST temporal evolution:

Sm(ti;tx) = sp(ti;te) + sp(ti;tk)
P+1+2N parameters

N
Sp.k(ti — )P + Z An e cos{nw(t; — tk) + dn,k to estimate

n=1

|
E

|
-

p

P N
= spr(ti —tr)? + Y [tnk cOsnw(t; — ti) + Bn,k sinnw(t; — ti)]
diurnal evolution, w =1 cpd
low-frequency component e.g. Gentemann (2003)
N

Estimate at ti=tk:  Smx = sm(trite) = Sok + Y Oni

n=1



Methodology: models

Si = Sm/(ti;tk) + okek
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Methodology: models

Si = Sm/(ti;tk) + okek

29
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h: bandwidth




Methodology: models

Sm/(tistk) = so + s1(ti — ti)

29
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Z i 4, Oy
Sm(tk; k) = So



Methodology: models

Sm(ti; tk) — S(),k + Sl,k(tz‘ — tk) -+ Z [Oén,k COS nw(tz- — tk) ~+ ﬁn,k sin nw(ti — tk)]

3

n=1

°C

n=1
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Methodology: models

Sm(tiste) = Sok + S1k(ti — te) + ¥ [Onkcosnw(ti — tr) + Bk sinnw(t; — ti)]

°C
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Methodology: models

Sm(ti; tk) — So,k + Sl,k(tz‘ — tk) -+ Z [an,k COS nw(tz- — tk) —+ 5n,k sin nw(ti — tk)]

n=1
29 | |

28.8 - . -
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28.2 -
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AW N=3

({ l@(‘(\
q)

il
S
Y I
7.4 @:{(o»g)"

°C

28 A
277.8 -

27.6 -

27

~

9
/O
L



Methodology: deriving uncertainties

3
Sm(tiste) = Sok + 51,.(ti — te) + Y [0k cOsnw(t; — ti) + B,k Sinnw(t; — ti)]

n=1

Method to fit model to observations is adapted from the LOcally WEighted Scatterplot
Smoothing estimator (LOWESS), Cleveland (1979); essentially an iterative least squares method

Theoretical formula for the variance of the estimates, i.e squared standard error of the S0k
estimates:

SP,k

~ 1k

Cg = Var(B) = (XW*X)—l(XTW*;:W*X)(XW*X)—1 3 —
QN k
b1,k
Unknown covariance matrix (~222 terms!) of the .
observation errors from the process model| 51;7 )

Si = Sm(ti;tk) + OkEK

How to move forward? See Fan & Gijbels (2018) but ...



Methodology: deriving uncertainties

Cp = Var(B) = (XW*X) L (XTW*EW*X) (XW*X) !

- Assume homoscedasticity and that the errors are independent

— 3 =0%(t)] = (07 (tg) + 03)1 o
- Estimate error variance directly from i
residuals of the fit -
6_\2 (tk) _ (S o XB)TW* (S o XB) Zj
: tr {W* - W*X(XTW*X)"1XTW*} 22
25 (85 — Sm(ts; ti))” 8 Kn, (ti — tx) 2,
14

/

effective number of degrees of freedom for the residuals for weighted least squares



Methodology: deriving uncertainties

. . SST =an+b SST sensor equation
error variance estimate: /
2

a
~2 ~2 2 ~92 . .
0°(ty) =07 (tx) + 05 = 07 () See Chiorboli (2003) . . .
( 1 12 a : resolution distributions
a
0.18 ). -t 0.18
0.17 - - -0.17
4 0.16 - — -0.16
0.15 - L0.15
0.14+4 - = - From metadata |[ -0.14
O™~ o 0134 -~ - . Estimated || 10.13
—~ . 0.12 - 10.12
O 0.11 - -0.11
— 4 - 0.1 0.1
o 6 0 0.09 - -0.09 ¢
= ° 0.08 - -0.08 °
= -8 0.07 - -0.07
iy 10 0.06 - -0.06
_ 0.05 - R S -0.05
50 -12 0.04 - I e -0.04
= 0.03 - - -0.03
v~ 9224 0.02 - -0.02
0.01 - - ' -0.01
0_ S 8 _0
o2 (ti)]M? R R R R A A N e A R
1\k 20 A 85 8, G O 0, 0 e O

ﬂ . .
Elipot et al. 2022 Elipot et al. 2022



Methodology: deriving uncertainties

SST estimate:

3
Sm.,k = Sm(tk; tk) — S0,k =+ E :an,k

n=1

Variance of estimate:

02 = Var [s,, (tr;tr)] =

/.

Variance of low-
frequency
component (1 term)

Var [So,k + Zizlan,k]

0?3 2Cov [(so,k) (Eizlan,k)] oD

A

2X3 terms

Variance of diurnal
component (32
terms)

(N+1)2 terms extracted from the error covariance matrix with (2N+P)2 terms
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Methodology: deriving uncertainties

. DrifterlGDP ID 55366
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24

Drifter GDP ID 55366

Estimates at hourly times



Methodology: deriving uncertainties

ad hoc derivation of a quality flag based on estimates and uncertainty estimates

Elipot et al. 2022



Interpreting uncertainties

process model: s; = s, (t;;tk) + orex

Examine residuals normalized by their estimates of error
standard deviations: € are not normally distributed:

A least squares method would put too much weight on

outliers ... 251

- A standard error therefore represents an interval
encompassing more probable values of the true
unknown values of a quantity, thus a more conservative =
confidence interval (78% confidence interval rather
than a 68% confidence interval for Normal).

A 1.5 -

a

« But 1.96 standard deviation encompasses
approximately 94% of the distribution of the residuals,
almost like a normal distribution

Elipot et al. 2022
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Interpreting uncertainties

Spatial distribution Drogued vs undrggued
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Recap and summary

- Example 1: Characterizing and modeling errors for the
purpose of conducting parameter estimation

» Example 2: Deriving uncertainty estimates using a
bootstrap method

» Example 3: Deriving and interpreting uncertainty estimates

Thank you! Shane Elipot, selipot@miami.edu
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Introduction to
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Go to Google slides



Tuesday activity!

« Goal of the activity is to compare two SST products: The Global Drifter
Program hourly SST product (Elipot et al. 2022) and the The Multi-scale
Ultra-high Resolution (MUR) SST analysis (Chin et al. 2017), a mostly
satellite-based product.

« Both products provide uncertainty estimates and we would like you to
use these estimates to inform the comparisons.

« A preliminary step of the comparison is “matching” the two datasets in
space (and time). This has been prepared for you so that you can focus on
the statistical and oceanographic aspects of the comparisons



Tuesday activity!

« MUR is available publicly on an AWS S3 bucket but only from 2002 to
2020 (https://registry.opendata.aws/mur/) ....

 Alternatively, it is is available from NASA PO.DACC from 2002 to present
(https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1). Datasets for

you to play with today were prepared from data downloaded from
PODAAC ...

» Global Drifter Data hourly product is available from AWS S3 bucket
https://reqistry.opendata.aws/noaa-oar-hourly-adp/



https://registry.opendata.aws/noaa-oar-hourly-gdp/

Tuesday activity!

- MUR is the result of the application of the Multi-Resolution Variational Analysis
(MRVA) method. This method fits a basis of wavelet functions to multiple
satellite and in situ datasets within multiple spatial and temporal windows.

- The method includes a least square estimation of the coefficients multiplying
basis functions, the sum of which leads to an estimate of the SST field T(x,y)
which can be evaluated anywhere and continuously on the globe. The MUR
product consists of an estimation of T(x,y) on a 0.01 by 0.01 geographical grid,
so approximately 1~km scale resolution (at best).

« As stated in Chin et al. (2017), the standard deviation of the formal
estimation error is provided at each grid point as an estimate of analysis
uncertainty. The analysis time is 09:00 UTC. One global estimate per day is
available.



Tuesday activity!

To prepare a match-up dataset, we matched
drifter and MUR data by doing a nearest neighbor
interpolation of MUR data (SST estimates and
uncertainty estimates) at the 9:00 am drifter
locations.

Limited ourselves to small region in North
Atlantic (60-50W, 30-40N)

Matched 74,921 9:00am drifter SST estimates
from 797 trajectories

For bonus activity, also matched 1,799,525 hourly
drifter SST estimates from 804 trajectories by
expanding to nearest neighbor interpolation in
time ...



Latitude

Tuesday activity!

time = 2020-01-01T09:00:00
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Tuesday activity!

SST from drifter 18702
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Questions?

Adam S. and Shane E. will be around the classrooms from 1:30pm to 3:30pm

4:00pm we all re-convene in SLAB103 for Science
Talk by Mohamed Iskandarani



